Emergent Computation pp 39-56

Part of the Emergence, Complexity and Computation book series (ECC, volume 24) | Cite as

A Hierarchy for \( BPP //\log \!\star \) Based on Counting Calls to an Oracle

  • Edwin Beggs
  • Pedro Cortez
  • José Félix Costa
  • John V Tucker
Chapter

Abstract

Algorithms whose computations involve making physical measurements can be modelled by Turing machines with oracles that are physical systems and oracle queries that obtain data from observation and measurement. The computational power of many of these physical oracles has been established using non-uniform complexity classes; in particular, for large classes of deterministic physical oracles, with fixed error margins constraining the exchange of data between algorithm and oracle, the computational power has been shown to be the non-uniform class \( BPP //\log \!\star \). In this paper, we consider non-deterministic oracles that can be modelled by random walks on the line. We show how to classify computations within \( BPP //\log \!\star \) by making an infinite non-collapsing hierarchy between \( BPP //\log \!\star \) and \( BPP \). The hierarchy rests on the theorem that the number of calls to the physical oracle correlates with the size of the responses to queries.

References

  1. 1.
    Ambaram, T., Beggs, E., Costa, J.F., Poças, D., Tucker, J.V.: An analogue-digital model of computation: turing machines with physical oracles. In: Adamatzky, A. (ed.) Advances in Unconventional Computing, vol. 1(theory), p. 38. Springer (Sept 2016, to appear)Google Scholar
  2. 2.
    Balcázar, J.L., Días, J., Gabarró, J.: Structural Complexity I, 2nd edn. Springer, 1988 (1995)Google Scholar
  3. 3.
    Balcázar, J.L., Gavaldà, R., Siegelmann, H.T.: Computational power of neural networks: a characterization in terms of Kolmogorov complexity. IEEE Trans. Inf. Theor. 43(4), 1175–1183 (1997)Google Scholar
  4. 4.
    Beggs, E., Cortez, P., Costa, J.F., Tucker, J.V.: Classifying the computational power of stochastic physical oracles (2016)Google Scholar
  5. 5.
    Beggs, E., Costa, J.F., Loff, B., Tucker, J.V.: Computational complexity with experiments as oracles II. Upper bounds. Proc. R. Soc., Ser. A (Math., Phys. Eng. Sci.) 465(2105), 1453–1465 (2009)Google Scholar
  6. 6.
    Beggs, E., Costa, J.F., Loff, B., Tucker, J.V.: Computational complexity with experiments as oracles. Proc. R. Soc., Ser. A (Math., Phys. Eng. Sci.), 464(2098), 2777–2801 (2008)Google Scholar
  7. 7.
    Beggs, E., Costa, J.F., Loff, B., Tucker, J.V.: Oracles and advice as measurements. In: Calude, C.S., Costa, J.F., Freund, R., Oswald, M., Rozenberg, G. (eds.) Unconventional Computation (UC 2008). Lecture Notes in Computer Science, vol. 5204, pp. 33–50. Springer (2008)Google Scholar
  8. 8.
    Beggs, E., Costa, J.F., Poças, D., Tucker, J.V.: Computations with oracles that measure vanishing quantities. Math. Struct. Comput. Sci. (in print)Google Scholar
  9. 9.
    Beggs, E., Costa, J.F., Tucker, J.V.: Computational models of measurement and Hempel’s axiomatization. In: Carsetti, A. (ed.) Causality, Meaningful Complexity and Embodied Cognition. Theory and Decision Library A, vol. 46, pp. 155–183. Springer (2010)Google Scholar
  10. 10.
    Beggs, E., Costa, J.F., Tucker, J.V.: Limits to measurement in experiments governed by algorithms. Math. Struct. Comput. Sci. 20(06), 1019–1050 (2010)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Beggs, E., Costa, J.F., Tucker, J.V.: Physical oracles: the turing machine and the Wheatstone bridge. Studia Log. 95(1–2), 279–300 (2010)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Beggs, E., Costa, J.F., Tucker, J.V.: The impact of models of a physical oracle on computational power. Math. Struct. Comput. Sci. 22(5), 853–879 (2012)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Beggs, E., Costa, J.F., Poças, D., Tucker, J.V.: Oracles that measure thresholds: the turing machine and the broken balance. J. Log. Comput. 23(6), 1155–1181 (2013)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Beggs, E., Costa, J.F., Tucker, J.V.: A natural computation model of positive relativisation. Int. J. Unconv. Comput. 10(1–2), 111–141 (2013)Google Scholar
  15. 15.
    Beggs, E., Costa, J.F., Poças, D., Tucker, J.V.: An analogue-digital Church-Turing thesis. Int. J. Found. Comput. Sci. 25(4), 373–390 (2014)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Beggs, E., Costa, J.F., Tucker, J.V.: Three forms of physical measurement and their computability. Rev. Symb. Log. 7(12), 618–646 (2014)Google Scholar
  17. 17.
    Blass, A., Braun, G.: Random orders and gambler’s ruin. Electr. J. Comb. 12, R23 (2005)MathSciNetMATHGoogle Scholar
  18. 18.
    Costa, J.F.: Incomputability at the foundations of physics (A study in the philosophy of science). J. Log. Comput. 23(6), 1225–1248 (2013)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Costa, J.F.: Uncertainty in time. Parallel Proc. Lett. 25, 1540007, 13 (2015)Google Scholar
  20. 20.
    Geroch, R., Hartle, J.B.: Computability and physical theories. Found. Phys. 16(6), 533–550 (1986)Google Scholar
  21. 21.
    Krantz, D.H., Suppes, P., Luce, R.D., Tversky, A.: Foundations of Measurement. Academic Press, vol. 1 (1971), vol. 2 (1989) and vol. 3 (1990)Google Scholar
  22. 22.
    Mosteller, F.: Fifty Challenging Problems in Probability with Solutions. Dover Publications (1987)Google Scholar
  23. 23.
    Odifreddi, P.: Classical Recursion Theory II. North Holland, Studies in Logic and the Foundations of Mathematics (1999)MATHGoogle Scholar
  24. 24.
    Siegelmann, H.T.: Neural Networks and Analog Computation: Beyond the Turing Limit. Birkhäuser (1999)Google Scholar
  25. 25.
    Venegas-Andraca, S.E.: Quantum Walks for Computer Scientists. Morgan and Claypool Publishers (2008)Google Scholar
  26. 26.
    Younger, A.S., Redd, E., Siegelmann, H.T.: Development of physical super-turing analog hardware. In: Obara, O.H., et. al. (eds.) Unconventional Computation and Natural Computation—13th International Conference (UCNC 2014). Lecture Notes in Computer Science, vol. 8553, pp. 379–391 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Edwin Beggs
    • 1
  • Pedro Cortez
    • 2
  • José Félix Costa
    • 2
  • John V Tucker
    • 1
  1. 1.College of Science, Swansea UniversityWalesUK
  2. 2.Department of Mathematics, Instituto Superior Técnico and Centro de Filosofia das Ciências da Universidade de LisboaLisboaPortugal

Personalised recommendations