Bio-inspired Sustainability Assessment – A Conceptual Framework

  • Rafael HornEmail author
  • Johannes Gantner
  • Ludmila Widmer
  • Klaus Peter Sedlbauer
  • Olga Speck
Part of the Biologically-Inspired Systems book series (BISY, volume 8)


Because of the tremendous challenges of the impacts caused by the globally growing economy, the targeted development of sustainable innovation is an inevitable social responsibility. Despite some advances, however, sustainability has not yet been integrated into product development on a broad scale. Although bio-inspired innovations seem to offer solutions, the transfer of sustainability through the bio-inspiration process is only conducted implicitly and the possible fulfilment of the ‘promise of bio-inspiration’ is only assessed retrospectively.

In view of this situation, a bio-inspired sustainability concept is defined by conflating sustainability and bio-inspiration and is made concrete by framing an integrated assessment approach. The concept links current sustainability assessment practice, exemplified by sustainability in construction and aspects of sustainability in biological systems. The basic assessment structure is derived from biological systems, which provide necessary functions through the efficient use of scarce resources. Its application covers the complete development process of bio-inspired innovations, providing feedback and thus decision support with a focus on sustainability. Hence, the implicit sustainability transfer of bio-inspiration is enhanced by targeted transfer and by a ‘commitment of bio-inspiration’ to create both sustainable and bio-inspired innovations.

As the assessment method itself is expected to be bio-inspired, it is constructed based on characteristics of biological systems such as effectiveness, adaptivity, multifunctionality and resilience.


Sustainability assessment Bio-inspired sustainability Commitment of bio-inspiration Integrated assessment Accompanying assessment Methodological development Conceptual framework Biomimetic promise Sustainability of biological systems Building sustainability Limited resources Functional requirements Resource efficiency Environmental aspects Economic aspects Social aspects 



This work has been funded by the German Research Foundation (DFG) as part of the Transregional Collaborative Research Centre (SFB/Transregio) 141 ‘Biological Design and Integrative Structures’/project C01 ‘The biomimetic promise: natural solutions as concept generators for sustainable technology development in the construction sector’.


  1. Achinstein P (1977) Function statements. Philos Sci 44(3):341–367CrossRefGoogle Scholar
  2. Antony F, Grießhammer R, Speck T, Speck O (2014) Sustainability assessment of a lightweight biomimetic ceiling structure. Bioinspir Biomim 9(1):16013. doi: 10.1088/1748-3182/9/1/016013 CrossRefGoogle Scholar
  3. Atkinson G, Dietz S, Neumayer E (2007) Handbook of sustainable development. Edward Elgar, Cheltenham/NorthamptonCrossRefGoogle Scholar
  4. Bloesch J, von Hauff M, Mainzer K et al (2015) Sustainable development integrated in the concept of resilence. Problemy Ekorozwoju – Probl Sustain Dev 10(1):7–14Google Scholar
  5. Blok K, Huijbregts M, Roes L et al (2013) A novel methodology for the sustainability impact assessment of new technologies. Accessed 1 Jun 2016
  6. Braungart M, McDonough W (2014) Cradle to Cradle: Einfach intelligent produzieren, Ungekürzte Taschenbuchausg. Piper, München, ZürichGoogle Scholar
  7. Carlowitz HCV (1713) Sylvicultura oeconomica oder haußwirthliche Nachricht und Naturgemäßige Anweisung zur Wilden Baum-Zucht. Johan Friedrich Braun, LeipzigGoogle Scholar
  8. Crul M, Diehl J (2007) Design for sustainability: a practical approach for developing economies. Accessed 1 Jun 2016
  9. Cruzen PJ (2002) Geology of mankind: the Anthropocene. Nature 415:23CrossRefGoogle Scholar
  10. Daly HE (1991) Steady-state economics, 2nd edn, with new essays. Island Press, Washington, DCGoogle Scholar
  11. Die Partner des Begleitprojekts MaRKT (2015) Leitfaden zur Bewertung von Ressourceneffizienz in Projekten der BMBF-Fördermaßnahme MatRessource. Accessed 1 Jun 2016
  12. Dietz S, Neumayer E (2007) Weak and strong sustainability in the SEEA: concepts and measurement. Ecol Econ 61(4):617–626. doi: 10.1016/j.ecolecon.2006.09.007 CrossRefGoogle Scholar
  13. Eberl S (2013) OPEN HOUSE: Assessment guideline. Accessed 1 Jun 2016
  14. Ebert T, Eßig N, Hauser G (2010) Zertifizierungssysteme für Gebäude: Nachhaltigkeit bewerten; internationaler Systemvergleich; Zertifizierung und Ökonomie. Inst. f. internat. Architektur-Dokumentation, MünchenGoogle Scholar
  15. FAO (2014) The Sustainability Assessment of Food and Agriculture systems (SAFA) guidelines: version 3.0. Accessed 1 Jun 2016Google Scholar
  16. Finkbeiner M, Schau EM, Lehmann A, Traverso M (2010) Towards life cycle sustainability assessment. Sustainability 2(10):3309–3322. doi: 10.3390/su2103309 CrossRefGoogle Scholar
  17. FitzPatrick W (2016) Morality and evolutionary biology. The Stanford encyclopedia of philosophy, Spring 2016 EditionGoogle Scholar
  18. Grießhammer R, Buchert M, Gensch C-O et al (2007) PROSA – Product Sustainability Assessment. Accessed 1 Jun 2016
  19. Grober U (2013) Die Entdeckung der Nachhaltigkeit: Kulturgeschichte eines Begriffs. Kunstmann, MünchenGoogle Scholar
  20. Hawken P, Lovins AB, Lovins LH (1999) Natural capitalism: creating the next industrial revolution, 1st edn. Little, Brown and Co., BostonGoogle Scholar
  21. Jung J, von der Assen N, Bardow A (2014) Sensitivity coefficient-based uncertainty analysis for multi-functionality in LCA. Int J Life Cycle Assess 19(3):661–676. doi: 10.1007/s11367-013-0655-4 CrossRefGoogle Scholar
  22. Klinglmair M, Sala S, Brandão M (2014) Assessing resource depletion in LCA: a review of methods and methodological issues. Int J Life Cycle Assess 19(3):580–592. doi: 10.1007/s11367-013-0650-9 CrossRefGoogle Scholar
  23. Klöpffer W, Grahl B (2009) Ökobilanz (LCA): Ein Leitfaden für Ausbildung und Beruf. Wiley, WeinheimCrossRefGoogle Scholar
  24. Kosmol J, Kanthak J, Herrman F et al (2012) Glossar zum Ressourcenschutz. Accessed 1 Jun 2016
  25. Leach M, Stirling A, Scoones I (2010) Dynamic sustainabilities: technology, environment, social justice, Pathways to Sustainability Series. Earthscan, LondonGoogle Scholar
  26. Lienhard J, Schleicher S, Poppinga S et al (2011) Flectofin: a hingeless flapping mechanism inspired by nature. Bioinspir Biomim 6(4):45001. doi: 10.1088/1748-3182/6/4/045001 CrossRefGoogle Scholar
  27. Meadows DL, Randers J, Behrens III., William W (1972) The limits to growth: a report for the club of Rome’s project on the predicament of mankind, 1. print. Universe Books, New YorkGoogle Scholar
  28. Moore FC (2011) Toppling the tripod: sustainable development, constructive ambiguity, and the environmental challenge. Consilience: J Sustain Dev 1(5):141–150Google Scholar
  29. Moro JL (2009) Baukonstruktion: vom Prinzip zum Detail. In: Grundlagen, vol 1. Springer, Berlin, HeidelbergGoogle Scholar
  30. Pedersen Zari M (2014) Ecosystem processes for biomimetic architectural and urban design. Archit Sci Rev 58(2):106–119. doi: 10.1080/00038628.2014.968086 CrossRefGoogle Scholar
  31. Pesqueux Y (2009) Sustainable development: a vague and ambiguous “theory”. Soc Bus Rev 4(3):231–245. doi: 10.1108/17465680910994227 CrossRefGoogle Scholar
  32. Purdey SJ (2012) Economic growth, the environment and international relations: the growth paradigm, vol 17, 2nd edn. Routledge, London/New YorkGoogle Scholar
  33. Reap J (2009) Holistic biomimicry: a biologically inspired approach to environmentally benign engineering. Dissertation, Georgia Institute of TechnologyGoogle Scholar
  34. Robinson J (2004) Squaring the circle? Some thoughts on the idea of sustainable development. Ecol Econ 48(4):369–384. doi: 10.1016/j.ecolecon.2003.10.017 CrossRefGoogle Scholar
  35. Schmidt-Bleek F, Bierter W (1998) Das MIPS-Konzept: Weniger Naturverbrauch--mehr Lebensqualität durch Faktor 10. Droemer, MünchenGoogle Scholar
  36. Schneider L, Berger M, Finkbeiner M (2015) Abiotic resource depletion in LCA—background and update of the anthropogenic stock extended abiotic depletion potential (AADP) model. Int J Life Cycle Assess 20(5):709–721. doi: 10.1007/s11367-015-0864-0 CrossRefGoogle Scholar
  37. Speck O, Speck D, Horn R et al (2016) Biomimetic – bio-inspired – biomorph – sustainable? An attempt to classify and clarify biology-derived technical developments. Bioinsp. Biomim. (in press)Google Scholar
  38. UNEP/SETAC Life Cycle Initiative (2011) Towards a life cycle sustainability assessment: making informed choices on products. Accessed 1 Jun 2016
  39. United Nations (2015) Transforming our world: the 2030 agenda for sustainable development: A/RES/70/1Google Scholar
  40. Valero A, Valero A (2010) Physical geonomics: combining the exergy and Hubbert peak analysis for predicting mineral resources depletion. Resour Conserv Recycl 54(12):1074–1083. doi: 10.1016/j.resconrec.2010.02.010 CrossRefGoogle Scholar
  41. Vester F (2011) Die Kunst vernetzt zu denken: Ideen und Werkzeuge für einen neuen Umgang mit Komplexität; ein Bericht an den Club of Rome, 8th edn. Dt. Taschenbuch-Verl, MünchenGoogle Scholar
  42. Vincent JF (2002) Survival of the cheapest. Mater Today 5(12):28–41. doi: 10.1016/S1369-7021(02)01237-3 CrossRefGoogle Scholar
  43. von Gleich A, Pade C, Petschow U, Pissarskoi E (2007) Bionik: Aktuelle Trends und zukünftige Potenziale. Institut für ökologische Wirtschaftsforschung, BerlinGoogle Scholar
  44. von Weizsäcker, Ernst Ulrich, Desha C (2010) Faktor Fünf: Die Formel für nachhaltiges Wachstum. Droemer, MünchenGoogle Scholar
  45. Walsh DM (1996) Fitness and function. Br J Philos Sci 47:553–574CrossRefGoogle Scholar
  46. Wittstock B (2012) Methode zur Analyse und Beurteilung des Einflusses von Bauprodukteigenschaften auf die Nachhaltigkeitsbewertung im Rahmen der Zertifizierung von Gebäuden. Dissertation, Universität StuttgartGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Rafael Horn
    • 1
    Email author
  • Johannes Gantner
    • 1
  • Ludmila Widmer
    • 2
  • Klaus Peter Sedlbauer
    • 1
  • Olga Speck
    • 2
    • 3
  1. 1.Fraunhofer Institute for Building PhysicsStuttgartGermany
  2. 2.Plant Biomechanics Group Freiburg, Botanic Garden, Faculty of BiologyUniversity of FreiburgFreiburgGermany
  3. 3.Freiburg Centre for Interactive Materials and Bioinspired Technologies (FIT)University of FreiburgFreiburgGermany

Personalised recommendations