Advertisement

Developing the Experimental Basis for an Evaluation of Scaling Properties of Brittle and ‘Quasi-Brittle’ Biological Materials

  • Stefanie SchmierEmail author
  • Christoph Lauer
  • Immanuel Schäfer
  • Katharina Klang
  • Georg Bauer
  • Marc Thielen
  • Kathrin Termin
  • Christoph Berthold
  • Siegfried Schmauder
  • Thomas Speck
  • Klaus G. Nickel
Chapter
Part of the Biologically-Inspired Systems book series (BISY, volume 8)

Abstract

The development of lightweight structures exhibiting a high energy dissipation capacity and a locally adapted puncture resistance is of increasing interest in building construction. As discussed in Chap.  7, inspiration can be found in biology, as numerous examples exist that have evolved one or even several of these properties. Major challenges in this interdisciplinary approach, i.e. the transfer of biological principles to building constructional elements, are scaling (different dimensions) and (at least for the botanic examples) the fact that different material classes constitute the structural basis for the functions of interest. Therefore, a mathematical description of the mechanical properties and the scalability is required that is applicable for both biological and technical materials. A basic requisite for the establishment of mathematical descriptions are well-defined test setups rendering a reliable data basis. In the following, two biological role models from the animal and plant kingdoms are presented, namely, sea urchin spines and coconut endocarp, and two experimental setups for quasi-static and dynamic testing of biological and bio-inspired technical materials are discussed.

Keywords

Biomimetics Brittle Characterization method Charpy test Coconut Cocos nucifera Endocarp Fruit wall Mechanical properties Impact resistance Impact Indentation Penetration Porous Reliability Scaling Weibull modulus Sea urchin Spines Heterocentrotus mammillatus Phyllacanthus imperialis Stereom Simulation FEM 

Notes

Acknowledgements

This work has been funded by the German Research Foundation (DFG) as part of the Transregional Collaborative Research Centre (SFB/Transregio) 141 ‘Biological Design and Integrative Structures’/project B01 ‘Scaling of Properties of Highly Porous Biological and Biomimetic Constructions’. The Plant Biomechanics Group Freiburg also thanks E. Heizmann and UNIVEG Freiburg, Germany, for providing the coconuts.

References

  1. Andrews EW, Gioux G, Onck P, Gibson LJ (2001) Size effects in ductile cellular solids. Part II: experimental results. Int J Mech Sci 43(3):701–713CrossRefGoogle Scholar
  2. Bauer G, Schmier S, Thielen M, Speck T (2015) Energy dissipation in plants – from puncture resistant seed coats to impact resistant tree barks. In: Yamamoto H, Morita M, Gril J (eds) Proceedings of the 8th plant biomechanics conference, Nagoya, Japan, pp 190–195Google Scholar
  3. Bažant ZP (2000) Size effect. Int J Solids Struct 37(1):69–80Google Scholar
  4. Bažant ZP (2004) Scaling theory for quasibrittle structural failure. Proc Natl Acad Sci U S A 101(37):13400–13407CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chan E, Elevitch CR (2006) Cocos nucifera (coconut). Species Profiles for Pacific Island Agroforestry 2:1–27Google Scholar
  6. Chan YL, Ngan AHW, King NM (2009) Use of focused ion beam milling for investigating the mechanical properties of biological tissues: a study of human primary molars. J Mech Behav Biomed 2(4):375–383CrossRefGoogle Scholar
  7. Danzer R (2014) On the relationship between ceramic strength and the requirements for mechanical design. J Eur Ceram Soc 34(15):3435–3460CrossRefGoogle Scholar
  8. Danzer R, Supancic P, Pascual J, Lube T (2007) Fracture statistics of ceramics–Weibull statistics and deviations from Weibull statistics. Eng Fract Mech 74(18):2919–2932CrossRefGoogle Scholar
  9. Franke E, Lieberei R, Reisdorff C (2012) Nutzpflanzen. Georg Thieme Verlag, StuttgartGoogle Scholar
  10. Griffith AA (1921) The phenomena of rupture and flow in solids. Phil Trans R Soc A 221:163–198CrossRefGoogle Scholar
  11. Grossmann JN, Nebelsick JH (2013) Comparative morphological and structural analysis of selected cidaroid and camarodont sea urchin spines. Zoomorphology 132(3):301–315CrossRefGoogle Scholar
  12. Krumbholz M, Hieronymus CF, Burchardt S, Troll VR, Tanner DC, Friese N (2014) Weibull-distributed dyke thickness reflects probabilistic character of host-rock strength. Nat Commun 5:3272CrossRefPubMedPubMedCentralGoogle Scholar
  13. Kumar PS, Ramachandra S, Ramamurty U (2003) Effect of displacement-rate on the indentation behavior of an aluminum foam. Mater Sci Eng A 347(1):330–337CrossRefGoogle Scholar
  14. Lawn B (1993) Fracture of brittle solids. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  15. Łysiak G (2007) Fracture toughness of pea: Weibull analysis. J Food Eng 83(3):436–443CrossRefGoogle Scholar
  16. Menig R, Meyers MH, Meyers MA, Vecchio KS (2000) Quasi-static and dynamic mechanical response of Haliotis rufescens (abalone) shells. Acta Mater 48(9):2383–2398CrossRefGoogle Scholar
  17. Mouginot R, Maugis D (1985) Fracture indentation beneath flat and spherical punches. J Mater Sci 20(12):4354–4376CrossRefGoogle Scholar
  18. Moureaux C, Pérez-Huerta A, Compère P, Zhu W, Leloup T, Cusack M, Dubois P (2010) Structure, composition and mechanical relations to function in sea urchin spine. J Struct Biol 170(1):41–49CrossRefPubMedGoogle Scholar
  19. Olurin OB, Fleck NA, Ashby MF (2000) Indentation resistance of an aluminium foam. Scr Mater 43(11):983–989CrossRefGoogle Scholar
  20. Presser V, Schultheiß S, Berthold C, Nickel KG (2009) Sea urchin spines as a model-system for permeable, light-weight ceramics with graceful failure behavior. Part I. Mechanical behavior of sea urchin spines under compression. J Bionic Eng 6(3):203–213CrossRefGoogle Scholar
  21. Seto J, Ma Y, Davis SA, Meldrum F, Gourrier A, Kim YY, Schilde U, Sztucki M, Burghammer M, Maltsev S, Jäger C, Cölfen H (2012) Structure-property relationships of a biological mesocrystal in the adult sea urchin spine. Proc Natl Acad Sci U S A 109(10):3699–3704CrossRefPubMedPubMedCentralGoogle Scholar
  22. Su X, Kamat S, Heuer AH (2000) The structure of sea urchin spines, large biogenic single crystals of calcite. J Mater Sci 35(22):5545–5551CrossRefGoogle Scholar
  23. Taylor D (2000) Scaling effects in the fatigue strength of bones from different animals. J Theor Biol 206(2):299–306CrossRefPubMedGoogle Scholar
  24. Wagermaier W, Klaushofer K, Fratzl P (2015) Fragility of bone material controlled by internal interfaces. Calcif Tissue Int 97(3):201–212CrossRefPubMedPubMedCentralGoogle Scholar
  25. Weibull W (1939) A statistical theory of the strength of materials. Generalstabens litografiska anstalts förlag, StockholmGoogle Scholar
  26. Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 18:293–297Google Scholar
  27. Winton AL (1901) Anatomy of the fruit of Cocos nucifera. Am J Sci 70:265–280CrossRefGoogle Scholar
  28. Yang F, Li JC (2013) Impression test—a review. Mat Sci Eng R 74(8):233–253CrossRefGoogle Scholar
  29. Yu HY, Imam MA, Rath BB (1985) Study of the deformation behaviour of homogeneous materials by impression tests. J Mater Sci 20(2):636–642CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Stefanie Schmier
    • 1
    • 2
    Email author
  • Christoph Lauer
    • 3
  • Immanuel Schäfer
    • 4
  • Katharina Klang
    • 3
  • Georg Bauer
    • 1
    • 2
  • Marc Thielen
    • 5
  • Kathrin Termin
    • 3
  • Christoph Berthold
    • 3
  • Siegfried Schmauder
    • 4
  • Thomas Speck
    • 1
    • 2
  • Klaus G. Nickel
    • 3
  1. 1.Plant Biomechanics Group, Botanic Garden, Faculty of BiologyUniversity of FreiburgFreiburgGermany
  2. 2.Freiburg Centre for Interactive Materials and Bioinspired Technologies (FIT)University of FreiburgFreiburgGermany
  3. 3.Applied Mineralogy (AMIN)University of TübingenTübingenGermany
  4. 4.Institute for Materials Testing, Materials Science and Strength of Materials (IMWF)University of StuttgartStuttgartGermany
  5. 5.Plant Biomechanics Group, Botanic Garden, Faculty of BiologyUniversity of FreiburgFreiburgGermany

Personalised recommendations