Advertisement

Obtaining Shape Descriptors from a Concave Hull-Based Clustering Algorithm

  • Christian Braune
  • Marco Dankel
  • Rudolf Kruse
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9897)

Abstract

In data analysis clustering is one of the core processes to find groups in otherwise unstructured data. Determining the number of clusters or finding clusters of arbitrary shape whose convex hulls overlap is in general a hard problem. In this paper we present a method for clustering data points by iteratively shrinking the convex hull of the data set. Subdividing the created hulls leads to shape descriptors of the individual clusters. We tested our algorithm on several data sets and achieved high degrees of accuracy. The cluster definition employed uses a notion of spatial separation. We also compare our algorithm against a similar algorithm that automatically detects the boundaries and the number of clusters. The experiments show that our algorithm yields the better results.

Keywords

Density based clustering Convex hulls Concave hulls Noise removal Automatic detection of cluster number 

References

  1. 1.
    Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. (TOMS) 22(4), 469–483 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Braune, C., Besecke, S., Kruse, R.: Density based clustering: alternatives to DBSCAN. In: Celebi, E.B. (ed.) Partitional Clustering Algorithms, pp. 193–213. Springer, Heidelberg (2015)Google Scholar
  3. 3.
    Chan, T.M.: Optimal output-sensitive convex hull algorithms in two and three dimensions. Discrete Comput. Geom. 16(4), 361–368 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Delaunay, B.: Sur la sphere vide. Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii i Estestvennyka Nauk, 7(793–800), 1–2 (1934)Google Scholar
  5. 5.
    Deng, M., Liu, Q., Cheng, T., Shi, Y.: An adaptive spatial clustering algorithm based on Delaunay triangulation. Comput. Environ. Urban Syst. 35(4), 320–332 (2011)CrossRefGoogle Scholar
  6. 6.
    Duckham, M., Kulik, L., Worboys, M., Galton, A.: Efficient generation of simple polygons for characterizing the shape of a set of points in the plane. Pattern Recogn. 41(10), 3224–3236 (2008)CrossRefzbMATHGoogle Scholar
  7. 7.
    Edelsbrunner, H., Kirkpatrick, D.G., Seidel, R.: On the shape of a set of points in the plane. IEEE Trans. Inf. Theory 29(4), 551–559 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Estivill-Castro, V., Lee, I.: Autoclust: automatic clustering via boundary extraction for mining massive point-data sets. In: Proceedings of the 5th International Conference on Geocomputation, pp. 23–25 (2000)Google Scholar
  9. 9.
    Graham, R.L.: An efficient algorithm for determining the convex hull of a finite planar set. Inf. Process. Lett. 1(4), 132–133 (1972)CrossRefzbMATHGoogle Scholar
  10. 10.
    Höppner, F., Klawonn, F., Kruse, R., Runkler, T.: Fuzzy Cluster Analysis: Methods for Classification, Data Analysis and Image Processing. Wiley, London (1999)zbMATHGoogle Scholar
  11. 11.
    Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)CrossRefzbMATHGoogle Scholar
  12. 12.
    Jarvis, R.A.: On the identification of the convex hull of a finite set of points in the plane. Inf. Process. Lett. 2(1), 18–21 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Klawonn, F., Kruse, R., Winkler, R.: Fuzzy clustering: more than just fuzzification. Fuzzy Sets Syst. 281, 272–279 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kruse, R., Borgelt, C., Klawonn, F., Moewes, C., Steinbrecher, M., Held, P.: Computational Intelligence: A Methodological Introduction. Springer Science & Business Media, London (2013)CrossRefzbMATHGoogle Scholar
  15. 15.
    Liparulo, L., Proietti, A., Panella, M.: Fuzzy clustering using the convex hull as geometrical model. Adv. Fuzzy Syst. 2015 (2015). Article No. 6Google Scholar
  16. 16.
    Liu, D., Nosovskiy, G.V., Sourina, O.: Effective clustering and boundary detection algorithm based on Delaunay triangulation. Pattern Recogn. Lett. 29(9), 1261–1273 (2008)CrossRefzbMATHGoogle Scholar
  17. 17.
    Moreira, A., Santos, M.Y.: Concave hull: a k-nearest neighbours approach for the computation of the region occupied by a set of points. In: Proceedings of the International Conference on Computer Graphics Theory and Applications, GRAPP 2007 (2007)Google Scholar
  18. 18.
    Rosén, E., Jansson, E., Brundin, M.: Implementation of a fast and efficient concave hull algorithm. Technical report, University of Uppsala, Sweden (2014)Google Scholar
  19. 19.
    Rosenberg, A., Hirschberg, J.: V-measure: a conditional entropy-based external cluster evaluation measure. In: EMNLP-CoNLL, vol. 7, pp. 410–420 (2007)Google Scholar
  20. 20.
    Yang, X., Cui, W.: A novel spatial clustering algorithm based on Delaunay triangulation. In: International Conference on Earth Observation Data Processing and Analysis, p. 728530. International Society for Optics and Photonics (2008)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Otto-von-Guericke-University of MagdeburgMagdeburgGermany

Personalised recommendations