Skip to main content

A First Step Toward Quantifying the Climate’s Information Production over the Last 68,000 Years

  • Conference paper
  • First Online:
Book cover Advances in Intelligent Data Analysis XV (IDA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9897))

Included in the following conference series:

Abstract

Paleoclimate records are extremely rich sources of information about the past history of the Earth system. We take an information-theoretic approach to analyzing data from the WAIS Divide ice core, the longest continuous and highest-resolution water isotope record yet recovered from Antarctica. We use weighted permutation entropy to calculate the Shannon entropy rate from these isotope measurements, which are proxies for a number of different climate variables, including the temperature at the time of deposition of the corresponding layer of the core. We find that the rate of information production in these measurements reveals issues with analysis instruments, even when those issues leave no visible traces in the raw data. These entropy calculations also allow us to identify a number of intervals in the data that may be of direct relevance to paleoclimate interpretation, and to form new conjectures about what is happening in those intervals—including periods of abrupt climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Since ice sheets preferentially collect \(^{16}\mathrm {O}\), while oceans preferentially collect \(^{18}\mathrm {O}\).

  2. 2.

    The accumulation data from the WDC has not yet been released publicly, so we cannot include a plot of it here, but there are some extremely interesting correspondences that we hope to be able to include in a few months, when we are allowed to share those data.

References

  1. http://tinyurl.com/hz8xelf

  2. Alley, R., et al.: Abrupt climate change. Science 299, 2005–2010 (2003)

    Article  Google Scholar 

  3. Bandt, C., Pompe, B.: Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88(17), 174102 (2002)

    Article  Google Scholar 

  4. Bollt, E., Stanford, T., Lai, Y.C., Życzkowski, K.: What symbolic dynamics do we get with a misplaced partition?: on the validity of threshold crossings analysis of chaotic time-series. Physica D 154(3), 259–286 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Buizert, C.: The WAIS divide deep ice core WD2014 chronology–Part 1: methane synchronization (6831 ka BP) and the gas age-ice age difference. Clim. Past 11, 153–173 (2015)

    Article  Google Scholar 

  6. Cao, Y., Tung, W., Gao, J., Protopopescu, V., Hively, L.: Detecting dynamical changes in time series using the permutation entropy. Phys. Rev. E 70(4), 046217 (2004)

    Article  MathSciNet  Google Scholar 

  7. Dakos, V., et al.: Slowing down as an early warning signal for abrupt climate change. Proc. Nat. Acad. Sci. 105(38), 14308–14312 (2008)

    Article  Google Scholar 

  8. Dansgaard, W.: Stable isotopes in precipitation. Tellus 16, 436–447 (1964)

    Article  Google Scholar 

  9. Dansgaard, W., et al.: Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218–220 (1993)

    Article  Google Scholar 

  10. Dansgaard, W., Johnsen, S., Clausen, H., Gundestrup, N.: Stable isotope glaciology. Medelelsser om Gronland 197, 1–53 (1973)

    Google Scholar 

  11. Dansgaard, W., White, J., Johnsen, S.: The abrupt termination of the younger Dryas climate event. Nature 339, 532–534 (1989)

    Article  Google Scholar 

  12. Fadlallah, B., Chen, B., Keil, A., Príncipe, J.: Weighted-permutation entropy: a complexity measure for time series incorporating amplitude information. Phys. Rev. E 87(2), 022911 (2013)

    Article  Google Scholar 

  13. Kraskov, A., Stögbauer, H., Grassberger, P.: Estimating mutual information. Phys. Rev. E 69(6), 066138 (2004)

    Article  MathSciNet  Google Scholar 

  14. Lenton, T., et al.: Early warning of climate tipping points from critical slowing down: comparing methods to improve robustness. Philos. Trans. R. Soc. Lond. A: Math. Phy. Eng. Sci. 370(1962), 1185–1204 (2012)

    Article  Google Scholar 

  15. Mantegna, R., Buldyrev, S., Goldberger, A., Havlin, S., Peng, C., Simons, M., Stanley, H.: Linguistic features of noncoding DNA sequences. Phys. Rev. Lett. 73(23), 3169–3172 (1994)

    Article  MATH  Google Scholar 

  16. Petit, J., et al.: Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999)

    Article  Google Scholar 

  17. Scheffer, M., et al.: Early-warning signals for critical transitions. Nature 461, 53–59 (2009)

    Article  Google Scholar 

  18. Schreiber, T.: Measuring information transfer. Phys. Rev. Lett. 85(2), 461–464 (2000)

    Article  Google Scholar 

  19. Shannon, C.: Prediction and entropy of printed English. Bell Syst. Tech. J. 30(1), 50–64 (1951)

    Article  MATH  Google Scholar 

  20. Sigl, M., et al.: The WAIS Divide deep ice core WD2014 chronology–part 2: Annual-layer counting (031 ka BP). Clim. Past 12, 769–786 (2016)

    Article  Google Scholar 

  21. WAIS Divide Project Members: Onset of deglacial warming in west antarctica driven by local orbital forcing. Nature 500, 440–444 (2013)

    Google Scholar 

  22. WAIS Divide Project Members: Precise interpolar phasing of abrupt climate change during the last ice age. Nature 520, 661–665 (2015)

    Article  Google Scholar 

  23. White, J., et al.: Abrupt impacts of climate change: Anticipating surprises. In: EGU General Assembly Conference Abstracts, vol. 16, p. 17028 (2014)

    Google Scholar 

  24. Winstrup, M., et al.: An automated approach for annual layer counting in ice cores. Clim. Past 8, 1881–1895 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Garland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Garland, J., Jones, T.R., Bradley, E., James, R.G., White, J.W.C. (2016). A First Step Toward Quantifying the Climate’s Information Production over the Last 68,000 Years. In: Boström, H., Knobbe, A., Soares, C., Papapetrou, P. (eds) Advances in Intelligent Data Analysis XV. IDA 2016. Lecture Notes in Computer Science(), vol 9897. Springer, Cham. https://doi.org/10.1007/978-3-319-46349-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46349-0_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46348-3

  • Online ISBN: 978-3-319-46349-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics