Advertisement

Interactions Matter: Modelling Everyday Pro-environmental Norm Transmission and Diffusion in Workplace Networks

  • J. Gary Polhill
  • Tony Craig
  • Amparo Alonso-Betanzos
  • Noelia Sánchez-Maroño
  • Oscar Fontenla-Romero
  • Adina Dumitru
  • Ricardo García-Mira
  • Mirilia Bonnes
  • Marino Bonaiuto
  • Giuseppe Carrus
  • Fridanna Maricchiolo
  • Ferdinando Fornara
  • Corina Ilin
  • Linda Steg
  • Angela Ruepert
  • Kees Keizer
Chapter
Part of the Understanding Complex Systems book series (UCS)

Abstract

This chapter demonstrates an approach to the agent-based modelling of norm transmission using decision trees learned from questionnaire data. We explore the implications of adding norm dynamics implied in static questionnaire data and the influence social network topology has on the outcome. We find that parameters determining network topology influence the outcome in both hierarchical and co-worker networks in a simulated workplace. As an exercise in empirical agent-based modelling, this work highlights the importance of gathering data on interactions in field studies.

Keywords

Classification and regression trees Norm transmission Empirical agent-based models Everyday pro-environmental behaviour 

Notes

Acknowledgments

This work was funded by the European Commission through Framework Programme 7 grant agreement number 265155 (Low Carbon at Work: Modelling Agents and Organisations to Achieve Transition to a Low-Carbon Europe), and by the Scottish Government Rural Affairs and the Environment Portfolio Strategic Research 2011–2016 Theme 4 (Economic Adaptation).

References

  1. 1.
    Lukàcs, G.: History and Class Consciousness. Merlin Press, London (First pub. 1923) (1977)Google Scholar
  2. 2.
    Lefebvre, H.: Everyday Life in the Modern World. Penguin, London (1971)Google Scholar
  3. 3.
    de Certeau, M.: The Practice of Everyday Life. University of California Press, Berkeley (1984)Google Scholar
  4. 4.
    Bonaiuto, M., Bilotta, E., Bonnes, M., Ceccareli, M., Martorella, H., Carrus, G.: Local identity moderating the role of individual differences in natural resource use: the case of water consumption. J. Appl. Soc. Psychol. 38(4), 947–967 (2008)CrossRefGoogle Scholar
  5. 5.
    Uzzell, D., Pol, E., Badenas, D.: Place identification, social cohesion, and environmental sustainability. Environ. Behav. 34(1), 26–53 (2002)CrossRefGoogle Scholar
  6. 6.
    Nigbur, D., Lyons, E., Uzzell, D.: Attitudes, norms, identity and environmental behaviour: using an expanded theory of planned behaviour to predict participation in a kerbside recycling programme. Br. J. Soc. Psychol. 49(2), 259–284 (2010)CrossRefGoogle Scholar
  7. 7.
    Nolan, J.M., Schultz, P.W., Cialdini, R.B., Goldstein, N.J., Griskevicius, V.: Normative social influence is underdetected. J. Pers. Soc. Psychol. 34, 913–923 (2008)CrossRefGoogle Scholar
  8. 8.
    Hollander, C.D., Wu, A.S.: The current state of normative agent-based systems. J. Artif. Soc. Soc. Simul. 14(2), 6 (2011). http://jasss.soc.surrey.ac.uk/14/2/6.html CrossRefGoogle Scholar
  9. 9.
    Verhagen, H.J.E.: Norm autonomous agents. Ph. D. thesis, Department of Computer and Systems Sciences, The Royal Institute of Technology and Stockholm University, Sweden (2000)Google Scholar
  10. 10.
    Therborn, G.: Back to norms! On the scope and dynamics of norms and normative action. Curr. Sociol. 50, 863–880 (2002)CrossRefGoogle Scholar
  11. 11.
    Rao, A.S., Georgeff, M.P.: BDI agents: from theory to practice. In: Lesser, V. (ed.) ICMAS-95: Proceedings, first international conference on multiagent systems, 12–14 June 1995, San Francisco, California, pp. 312–319. AAAI Press, Menio Park, CA (1995)Google Scholar
  12. 12.
    Axelrod, R.: An evolutionary approach to norms. Am. Polit. Sci. Rev. 80(4), 1095–1111 (1986)CrossRefGoogle Scholar
  13. 13.
    Elsenbroich, C., Gilbert, N.: Modelling Norms. Springer, Dordrecht (2014)CrossRefGoogle Scholar
  14. 14.
    Schelling, T.M.: Dynamic models of segregation. J. Math. Sociol. 1, 143–186 (1971)CrossRefGoogle Scholar
  15. 15.
    Sakoda, J.M.: The checkerboard model of social interaction. J. Math. Sociol. 1, 119–132 (1971)CrossRefGoogle Scholar
  16. 16.
    Janssen, M.A., Ostrom, E.: Empirically based, agent-based models. Ecol. Soc. 11(2), 37 (2007). http://www.ecologyandsociety.org/vol11/iss2/art37/ CrossRefGoogle Scholar
  17. 17.
    Smajgl, A., Brown, D.G., Valbuena, D., Huigen, M.G.A.: Empirical characterisation of agent behaviours in socio-ecological systems. Environ. Model. Software 26, 837–844 (2011)CrossRefGoogle Scholar
  18. 18.
    Barreteau, O., et~al.: Our companion modelling approach. J. Artif. Soc. Soc. Simul. 6(2), 1. http://jasss.soc.surrey.ac.uk/6/2/1.html (2003)
  19. 19.
    Moss, S.: Alternative approaches to the empirical validation of agent-based models. J. Artif. Soc. Soc. Simul. 11(1), 5 (2008). http://jasss.soc.surrey.ac.uk/11/1/5.html Google Scholar
  20. 20.
    Schwartz, S.H.: Universals in the content and structure of values: theoretical advances and empirical tests in 20 countries. In: Zanna, M.P. (ed.) Advances in Experimental Social Psychology Volume 25, pp. 1–65. Academic, San Diego (1992)Google Scholar
  21. 21.
    Steg, L., Perlaviciute, G., van der Werff, E., Lurvink, J.: The significance of hedonic values for environmentally relevant attitudes, preferences, and actions. Environ. Behav. 46, 163–192 (2014)CrossRefGoogle Scholar
  22. 22.
    van der Werff, E., Steg, L., Keizer, K.: The value of environmental self-identity: the relationship between biospheric values, environmental self-identity and environmental preferences, intentions and behaviour. J. Environ. Psychol. 34, 55–63 (2013)CrossRefGoogle Scholar
  23. 23.
    Cialdini, R.B., Reno, R.R., Kallgren, C.A.: A focus theory of normative conduct: recycling the concept of norms to reduce littering in public places. J. Pers. Soc. Psychol. 58(6), 1015–1026 (1990)CrossRefGoogle Scholar
  24. 24.
    Polhill, J.G.: Agent-based modeling of socio-economic processes related to the environment: example of land use change. In: Baveye, P., Mysiak, J., Laba, M. (eds.) Uncertainties in Environmental Modeling and Consequences for Policy Making, pp. 61–76. Springer, Dordrecht (2009)CrossRefGoogle Scholar
  25. 25.
    Sánchez-Maroño, N., Alonso-Betanzos, A., Fontenla-Romero, O., Polhill, J. G., Craig, T.: Empirically-derived behavioral rules in agent-based models using decision trees learned from questionnaire data. In: Agent-Based Modeling of Sustainable Behaviors. Springer (2016)Google Scholar
  26. 26.
    Hall, M.A.: Correlation-based feature selection for machine learning. Ph.D. thesis, University of Waikato, New Zealand (1999)Google Scholar
  27. 27.
    Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued attributes for classification learning. In Bajcsy, R. (ed.) Proceedings of the 13th International Joint Conference on Artificial Intelligence. Chambéry, France, August 28 September 3, vol. 2., pp. 1022–1027. Morgan-Kaufmann (1993)Google Scholar
  28. 28.
    Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufman, San Francisco, CA (1993)Google Scholar
  29. 29.
    Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., Goss-Custard, J., Grand, T., Heinz, S.K., Huse, G., Huth, A., Jepsen, J.U., Jørgensen, C., Mooij, W.M., Müller, B., Pe’er, G., Piou, C., Railsback, S.F., Robbins, A.M., Robbins, M.M., Rossmanith, E., Rüger, N., Strand, E., Souissi, S., Stillman, R.A., Vabø, R., Visser, U., DeAngelis, D.L.: A standard protocol for describing individual-based and agent-based models. Ecol. Model. 198, 115–126 (2006)CrossRefGoogle Scholar
  30. 30.
    Grimm, V., Berger, U., DeAngelis, D.L., Polhill, J.G., Giske, J., Railsback, S.F.: The ODD protocol: a review and first update. Ecol. Model. 221, 2760–2768 (2010)CrossRefGoogle Scholar
  31. 31.
    Hamill, L., Gilbert, N.: Social circles: a simple structure for agent-based social network models. J. Artif. Soc. Soc. Simul. 12(2), 3 (2009). http://jasss.soc.surrey.ac.uk/12/2/3.html Google Scholar
  32. 32.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 409–410 (1998)CrossRefGoogle Scholar
  33. 33.
    Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)CrossRefGoogle Scholar
  34. 34.
    Kaiser, F.G., Byrka, K., Hartig, T.: Reviving Campbell’s paradigm for attitude research. Pers. Soc. Psychol. Rev. 14, 351–367 (2010)CrossRefGoogle Scholar
  35. 35.
    Campbell, D.T.: Social attitudes and other acquired behavioral dispositions. In: Koch, S. (ed.) Psychology: A Study of a Science Volume 6, pp. 94–172. McGraw-Hill, New York (1963)Google Scholar
  36. 36.
    Choi, H., Kim, S.-H., Lee, J.: Role of network structure and network effects in diffusion of innovations. Ind. Mark. Manag. 39, 170–177 (2010)CrossRefGoogle Scholar
  37. 37.
    Keizer, K., Lindenberg, S., Steg, L.: The spreading of disorder. Science 322, 1681–1685 (2008)CrossRefGoogle Scholar
  38. 38.
    Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge (1994)CrossRefGoogle Scholar
  39. 39.
    Latour, B.: Reassembling the Social: An Introduction to Actor-Network Theory. Oxford University Press, Oxford (2005)Google Scholar
  40. 40.
    Gilbert, N.: Agent-based social simulation: dealing with complexity. ESRC Research Methods Festival, St. Catherine’s College, Oxford, 17–20 July 2006. http://www.ccsr.ac.uk/methods/festival/programme/witha/gilbert.pdf (2006)
  41. 41.
    Ekasingh, B., Ngamsomsuke, K., Letcher, R.A., Spate, J.: A data mining approach to simulating farmers’ crop choices for integrated water resources management. J. Environ. Manage. 77, 315–325 (2005)CrossRefGoogle Scholar
  42. 42.
    Schreinemachers, P., Berger, T.: Land-use decisions in developing countries and their representation in multi-agent systems. J. Land Use Sci. 1, 29–44 (2006)CrossRefGoogle Scholar
  43. 43.
    Verhagen, H.: Simulation of the learning of norms. Soc. Sci. Comput. Rev. 19(3), 296–306 (2001)CrossRefGoogle Scholar
  44. 44.
    Oxley, T., Jeffrey, P., Lemon, M.: Policy relevant modelling: relationships between water, land use, and farmer decision processes. Integr Assess. 3(1), 30–49 (2002)CrossRefGoogle Scholar
  45. 45.
    Smajgl, A., Bohensky, E.: Behaviour and space in agent-based modelling: poverty patterns in East Kalimantan, Indonesia. Environ. Model. Software 45, 8–14 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • J. Gary Polhill
    • 1
  • Tony Craig
    • 2
  • Amparo Alonso-Betanzos
    • 3
  • Noelia Sánchez-Maroño
    • 3
  • Oscar Fontenla-Romero
    • 3
  • Adina Dumitru
    • 3
  • Ricardo García-Mira
    • 3
  • Mirilia Bonnes
    • 4
  • Marino Bonaiuto
    • 4
  • Giuseppe Carrus
    • 5
  • Fridanna Maricchiolo
    • 5
  • Ferdinando Fornara
    • 6
  • Corina Ilin
    • 7
  • Linda Steg
    • 8
  • Angela Ruepert
    • 8
  • Kees Keizer
    • 8
  1. 1.Information and Computational ScienceThe James Hutton InstituteAberdeenUK
  2. 2.The James Hutton InstituteAberdeenUK
  3. 3.Universidade da CoruñaA CoruñaSpain
  4. 4.Centro Interuniversitario di Ricerca in Psicologia Ambientale (CIRPA)Sapienza Università di RomaRomeItaly
  5. 5.CIRPAUniversità Roma TreRomeItaly
  6. 6.CIRPAUniversità di CagliariRomeItaly
  7. 7.Universitatea de Vest din TimisoaraTimisoaraRomania
  8. 8.Rijksuniversiteit GroningenGroningenThe Netherlands

Personalised recommendations