Dynamic Trust Management Framework for Robotic Multi-Agent Systems

  • Igor Zikratov
  • Oleg Maslennikov
  • Ilya Lebedev
  • Aleksandr Ometov
  • Sergey Andreev
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9870)

Abstract

A lot of research attention has recently been dedicated to multi-agent systems, such as autonomous robots that demonstrate proactive and dynamic problem-solving behavior. Over the recent decades, there has been enormous development in various agent technologies, which enabled efficient provisioning of useful and convenient services across a multitude of fields. In many of these services, it is required that information security is guaranteed reliably. Unless there are certain guarantees, such services might observe significant deployment issues. In this paper, a novel trust management framework for multi-agent systems is developed that focuses on access control and node reputation management. It is further analyzed by utilizing a compromised device attack, which proves its suitability for practical utilization.

Keywords

Multi-agent systems Information security Access control Trust management 

References

  1. 1.
    Hernandez, L., Baladron, C., Aguiar, J.M., Carro, B., Sanchez-Esguevillas, A.J., Lloret, J., Chinarro, D., Gomez-Sanz, J.J., Cook, D.: A multi-agent system architecture for smart grid management and forecasting of energy demand in virtual power plants. IEEE Commun. Mag. 51(1), 106–113 (2013)CrossRefGoogle Scholar
  2. 2.
    Andreev, S., Larmo, A., Gerasimenko, M., Petrov, V., Galinina, O., Tirronen, T., Torsner, J., Koucheryavy, Y.: Efficient small data access for machine-type communications in LTE. In: Proceedings of the IEEE International Conference on Communications (ICC), pp. 3569–3574. IEEE (2013)Google Scholar
  3. 3.
    Cao, Y., Yu, W., Ren, W., Chen, G.: An overview of recent progress in the study of distributed multi-agent coordination. IEEE Trans. Ind. Inf. 9(1), 427–438 (2013)CrossRefGoogle Scholar
  4. 4.
    Militano, L., Fitzek, F., Iera, A., Molinaro, A.: On the beneficial effects of cooperative wireless peer-to-peer networking. In: Pupolin, S. (ed.) Wireless Communications 2007 CNIT Thyrrenian Symposium, pp. 97–109. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Petrov, V., Andreev, S., Turlikov, A., Koucheryavy, Y.: On IEEE 802.16m overload control for smart grid deployments. In: Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART 2012. LNCS, vol. 7469, pp. 86–94. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Ren, W., Beard, R.W., Atkins, E.M.: A survey of consensus problems in multi-agent coordination. In: Proceedings of the 2005 American Control Conference, pp. 1859–1864. IEEE (2005)Google Scholar
  7. 7.
    Lesser, V.R.: Reflections on the nature of multi-agent coordination and its implications for an agent architecture. Auton. Agent. Multi-Agent Syst. 1(1), 89–111 (1998)CrossRefGoogle Scholar
  8. 8.
    Shehory, O.M., Sycara, K., Jha, S.: Multi-agent coordination through coalition formation. In: Singh, M.P., Rao, A., Wooldridge, M.J. (eds.) ATAL 1997. LNCS, vol. 1365, pp. 143–154. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)CrossRefGoogle Scholar
  10. 10.
    Jung, Y., Kim, M., Masoumzadeh, A., Joshi, J.B.: A survey of security issue in multi-agent systems. Artif. Intell. Rev. 37(3), 239–260 (2012)CrossRefGoogle Scholar
  11. 11.
    Araniti, G., Calabro, F., Iera, A., Molinaro, A., Pulitano, S.: Differentiated services QoS issues in next generation radio access network: a new management policy for expedited forwarding per-hop behaviour. In: Proceedings of the IEEE 60th Vehicular Technology Conference (VTC2004-Fall), vol. 4, pp. 2693–2697. IEEE (2004)Google Scholar
  12. 12.
    Bell, D., LaPadula, L.: Secure Computer Systems: Unified Exposition and Multics Interpretation, vol. MTR-2997 R. MITRE Corp., Bedford (1976)Google Scholar
  13. 13.
    Harrison, M.A., Ruzzo, W.L., Ullman, J.D.: Protection in operating systems. Commun. ACM 19(8), 461–471 (1976)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Higgins, F., Tomlinson, A., Martin, K.M.: Threats to the swarm: security considerations for swarm robotics. Int. J. Adv. Secur. 2(2&3), 1–10 (2009)Google Scholar
  15. 15.
    Petrov, V., Edelev, S., Komar, M., Koucheryavy, Y.: Towards the era of wireless keys: how the IoT can change authentication paradigm. In: Proceedings of the IEEE World Forum on Internet of Things (WF-IoT), pp. 51–56, March 2014Google Scholar
  16. 16.
    Weis, S.A., Sarma, S.E., Rivest, R.L., Engels, D.W.: Security and privacy aspects of low-cost radio frequency identification systems. In: Hutter, D., Müller, G., Stephan, W., Ullmann, M. (eds.) Security in Pervasive Computing. LNCS, vol. 2802, pp. 201–212. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Kachirski, O., Guha, R.: Effective intrusion detection using multiple sensors in wireless ad hoc networks. In: Proceedings of the 36th Annual Hawaii International Conference on System Sciences, 8 p. IEEE (2003)Google Scholar
  18. 18.
    Mishra, A., Nadkarni, K., Patcha, A.: Intrusion detection in wireless ad hoc networks. IEEE Wirel. Commun. 11(1), 48–60 (2004)CrossRefGoogle Scholar
  19. 19.
    Pelechrinis, K., Iliofotou, M., Krishnamurthy, S.V.: Denial of service attacks in wireless networks: the case of jammers. IEEE Commun. Surv. Tutor. 13(2), 245–257 (2011)CrossRefGoogle Scholar
  20. 20.
    Basagni, S.: Distributed clustering for ad hoc networks. In: Proceedings of the Fourth International Symposium on Parallel Architectures, Algorithms, and Networks (I-SPAN 1999), pp. 310–315. IEEE (1999)Google Scholar
  21. 21.
    Karnik, N.M., Tripathi, A.R.: Security in the Ajanta mobile agent system. Softw. Pract. Exp. 31(4), 301–329 (2001)CrossRefMATHGoogle Scholar
  22. 22.
    Sander, T., Tschudin, C.F.: Protecting mobile agents against malicious hosts. In: Vigna, G. (ed.) Mobile Agents and Security. LNCS, vol. 1419, pp. 44–60. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  23. 23.
    Hohl, F.: Time limited blackbox security: protecting mobile agents from malicious hosts. In: Vigna, G. (ed.) Mobile Agents and Security. LNCS, vol. 1419, pp. 92–113. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  24. 24.
    Page, J., Zaslavsky, A., Indrawan, M.: A buddy model of security for mobile agent communities operating in pervasive scenarios. In: Proceedings of the Second Workshop on Australasian Information Security, Data Mining and Web Intelligence, and Software Internationalisation, vol. 32, pp. 17–25. Australian Computer Society, Inc. (2004)Google Scholar
  25. 25.
    Page, J., Zaslavsky, A., Indrawan, M.: Countering security vulnerabilities using a shared security buddy model schema in mobile agent communities. In: Proceedings of the First International Workshop on Safety and Security in Multi-Agent Systems (SASEMAS 2004), pp. 85–101 (2004)Google Scholar
  26. 26.
    Zikratov, I.A., Lebedev, I.S., Gurtov, A.V.: Trust and reputation mechanisms for multi-agent robotic systems. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART 2014. LNCS, vol. 8638, pp. 106–120. Springer, Heidelberg (2014)Google Scholar
  27. 27.
    Hong, Y., Hu, J., Gao, L.: Tracking control for multi-agent consensus with an active leader and variable topology. Automatica 42(7), 1177–1182 (2006)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Ni, W., Cheng, D.: Leader-following consensus of multi-agent systems under fixed and switching topologies. Syst. Control Lett. 59(3), 209–217 (2010)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Igor Zikratov
    • 1
  • Oleg Maslennikov
    • 1
  • Ilya Lebedev
    • 1
  • Aleksandr Ometov
    • 2
  • Sergey Andreev
    • 2
  1. 1.Saint Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University)St. PetersburgRussia
  2. 2.Tampere University of TechnologyTampereFinland

Personalised recommendations