Optimizing Network-Assisted WLAN Systems with Aggressive Channel Utilization

  • Aleksandr Ometov
  • Sergey Andreev
  • Alla Levina
  • Sergey Bezzateev
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9870)

Abstract

Cellular network assistance over unlicensed spectrum technologies is a promising approach to improve the average system throughput and achieve better trade-off between latency and energy-efficiency in Wireless Local Area Networks (WLANs). However, the extent of ultimate user gains under network-assisted WLAN operation has not been explored sufficiently. In this paper, an analytical model for user-centric performance evaluation in such a system is presented. The model captures the throughput, energy efficiency, and access delay assuming aggressive WLAN channel utilization. In the second part of the paper, our formulations are validated with system-level simulations. Finally, the cases of possible unfair spectrum use are also discussed.

References

  1. 1.
    Doppler, K., Rinne, M., Wijting, C., Ribeiro, C., Hugl, K.: Device-to-device communication as an underlay to LTE-advanced networks. IEEE Commun. Mag. 47(12), 42–49 (2009)CrossRefGoogle Scholar
  2. 2.
    IEEE: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications, IEEE standard 802.11 (2014)Google Scholar
  3. 3.
    Andreev, S., Moltchanov, D., Galinina, O., Pyattaev, A., Ometov, A., Koucheryavy, Y.: Network-assisted device-to-device connectivity: contemporary vision and open challenges. In: Proceedings of 21th European Wireless Conference, VDE, pp. 1–8 (2015)Google Scholar
  4. 4.
    Andreev, S., Gonchukov, P., Himayat, N., Koucheryavy, Y., Turlikov, A.: Energy efficient communications for future broadband cellular networks. Comput. Commun. 35(14), 1662–1671 (2012)CrossRefGoogle Scholar
  5. 5.
    Masek, P., Zeman, K., Hosek, J., Tinka, Z., Makhlouf, N., Muthanna, A., Herencsar, N., Novotny, V.: User performance gains by data offloading of LTE mobile traffic onto unlicensed IEEE 802.11 links. In: Proceedings of 38th International Conference on Telecommunications and Signal Processing (TSP), pp. 117–121. IEEE (2015)Google Scholar
  6. 6.
    Bilgir Yetim, O., Martonosi, M.: Adaptive usage of cellular and WiFi bandwidth: an optimal scheduling formulation. In: Proceedins of the seventh ACM international workshop on Challenged networks, pp. 69–72. ACM (2012)Google Scholar
  7. 7.
    Pyattaev, A., Johnsson, K., Andreev, S., Koucheryavy, Y.: 3GPP. LTE traffic offloading onto WiFi direct. In: Proceedings of Wireless Communications and Networking Conference Workshops (WCNCW), pp. 135–140. IEEE, April 2013Google Scholar
  8. 8.
    Fodor, G., Dahlman, E., Mildh, G., Parkvall, S., Reider, N., Miklós, G., Turányi, Z.: Design aspects of network assisted device-to-device communications. IEEE Commun. Mag. 50(3), 170–177 (2012)CrossRefGoogle Scholar
  9. 9.
    Araniti, G., Calabro, F., Iera, A., Molinaro, A., Pulitano, S.: Differentiated services QoS issues in next generation radio access network: a new management policy for expedited forwarding per-hop behaviour. In: Proceedings of 60th Vehicular Technology Conference (VTC2004-Fall), vol. 4, pp. 2693–2697. IEEE (2004)Google Scholar
  10. 10.
    Petrov, V., Moltchanov, D., Koucheryavy, Y.: Applicability assessment of terahertz information showers for next-generation wireless networks. In: IEEE International Conference on Communications (ICC), pp. 1–7, May 2016Google Scholar
  11. 11.
    Kwak, B.J., Song, N., Miller, L.E.: Performance analysis of exponential backoff. IEEE Trans. Netw. 13, 343–355 (2005)CrossRefGoogle Scholar
  12. 12.
    Tinnirello, I., Bianchi, G., Xiao, Y.: Refinements on IEEE 802.11 distributed coordination function modeling approaches. IEEE Trans. Veh. Technol. 59, 1055–1067 (2010)CrossRefGoogle Scholar
  13. 13.
    Ometov, A., Andreev, S., Turlikov, A., Koucheryavy, Y.: Characterizing the effect of packet losses in current WLAN deployments. In: Proceedings of 13th International Conference on ITS Telecommunications (ITST), pp. 331–336. IEEE (2013)Google Scholar
  14. 14.
    Malone, D., Dangerfield, I., Leith, D.: Verification of common 802.11 MAC model assumptions. In: Uhlig, S., Papagiannaki, K., Bonaventure, O. (eds.) PAM 2007. LNCS, vol. 4427, pp. 63–72. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Bianchi, G.: Performance analysis of the IEEE 802.11 distributed coordination function. IEEE J. Sel. Areas Commun. 18(3), 535–547 (2000)CrossRefGoogle Scholar
  16. 16.
    Bianchi, G., Tinnirello, I.: Remarks on IEEE 802.11 DCF performance analysis. IEEE Commun. Lett. 9(8), 765–767 (2005)CrossRefGoogle Scholar
  17. 17.
    Andreev, S., Koucheryavy, Y., de Sousa, L.F.D.: Calculation of transmission probability in heterogeneous ad hoc networks. In: Proceedings of Internet Communications (BCFIC Riga), 2011 Baltic Congress on Future, pp. 75–82. IEEE (2011)Google Scholar
  18. 18.
    Wu, H., Peng, Y., Long, K., Cheng, S., Ma, J.: Performance of reliable transport protocol over IEEE 802.11 wireless LAN: analysis and enhancement. In: Proceedings of INFOCOM 2002 Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 2, pp. 599–607. IEEE (2002)Google Scholar
  19. 19.
    Afanasyev, M., Chen, T., Voelker, G.M., Snoeren, A.C.: Usage patterns in an urban WiFi network. IEEE/ACM Trans. Netw. 18(5), 1359–1372 (2010)CrossRefGoogle Scholar
  20. 20.
    Abramson, N.: The ALOHA system - another alternative for computer communications. In: Proceedings of AFIPS, Fall Joint Computer Conference, vol. 37, pp. 281–285 (1970)Google Scholar
  21. 21.
    Jain, R., Chiu, D., Hawe, W.: A quantitative measure of fairness and discrimination for resource allocation in shared computer systems. DEC Research Report TR-301 (1985)Google Scholar
  22. 22.
    Ometov, A.: Fairness characterization in contemporary IEEE 802.11 deployments with saturated traffic load. In: Proceedings of The 15th Conference of FRUCT assosiation (2014)Google Scholar
  23. 23.
    Moltchanov, D., Koucheryavy, Y., Harju, J.: Loss performance model for wireless channels with autocorrelated arrivals and losses. Comput. Commun. 29(13), 2646–2660 (2006)CrossRefGoogle Scholar
  24. 24.
    Andreev, S., Koucheryavy, Y., Himayat, N., Gonchukov, P., Turlikov, A.: Active-mode power optimization in OFDMA-based wireless networks. In: Proceedings of IEEE Globecom Workshops, pp. 799–803. IEEE (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Aleksandr Ometov
    • 1
  • Sergey Andreev
    • 1
  • Alla Levina
    • 2
  • Sergey Bezzateev
    • 3
  1. 1.Tampere University of TechnologyTampereFinland
  2. 2.Saint Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University)St. PetersburgRussia
  3. 3.Saint Petersburg University of Aerospace InstrumentationSt. PetersburgRussia

Personalised recommendations