Multi-device Anonymous Authentication

  • Kamil Kluczniak
  • Jianfeng Wang
  • Xiaofeng Chen
  • Mirosław Kutyłowski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9955)


Recently, a few pragmatic and privacy protecting systems for authentication in multiple systems have been designed. The most prominent examples are Restricted Identification and Pseudonymous Signature schemes designed by the German Federal Office for Information Security for German personal identity cards. The main properties are that a user can authenticate himself with a single private key (stored on a smart-card), but nevertheless the user’s IDs in different systems are unlinkable.

We develop a solution which enables a user to achieve the above mentioned goals while using more than one personal device, each holding a single secret key, but different for each device – as for security reasons no secret key is allowed to leave a secure device. Our solution is privacy preserving: it will remain hidden for the service system which device is used. Nevertheless, if a device gets stolen, lost or compromised, the user can revoke it (leaving his other devices intact).

In particular, in this way we create a strong authentication framework for cloud users, where the cloud does not learn indirectly personal data. In the standard solutions there is no way to avoid leaking information that, for instance, the user is in his office and authenticates via his desktop computer.

Our solution is based on a novel cryptographic primitive, called Pseudonymous Public Key Group Signature.


Signature schemes Privacy Pseudonyms Group signature 


  1. 1.
    Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal definitions, simplified requirements, and a construction based on general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (2003). doi: 10.1007/3-540-39200-9_38 CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case of dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Boyen, X., Waters, B.: Full-domain subgroup hiding and constant-size group signatures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 1–15. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: Proceedings of the 11th ACM Conference on Computer and Communications Security, CCS 2004, pp. 168–177. ACM, New York (2004)Google Scholar
  6. 6.
    Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Trolin, M., Wikström, D.: Hierarchical group signatures. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 446–458. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Ali, S.T., Amberker, B.B.: Dynamic attribute based group signature with attribute anonymity and tracing in the standard model. In: Gierlichs, B., Guilley, S., Mukhopadhyay, D. (eds.) SPACE 2013. LNCS, vol. 8204, pp. 147–171. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Han, S., Wang, J., Liu, W.: An efficient identity-based group signature scheme over elliptic curves. In: Freire, M.M., Chemouil, P., Lorenz, P., Gravey, A. (eds.) ECUMN 2004. LNCS, vol. 3262, pp. 417–429. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Bringer, J., Chabanne, H., Lescuyer, R., Patey, A.: Efficient and strongly secure dynamic domain-specific pseudonymous signatures for ID documents. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 252–269. Springer, Heidelberg (2014)Google Scholar
  11. 11.
    Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Proceedings of the 11th ACM Conference on Computer and Communications Security, CCS 2004, pp. 132–145. ACM, New York (2004)Google Scholar
  12. 12.
    Camenisch, J., Mödersheim, S., Sommer, D.: A formal model of identity mixer. In: Kowalewski, S., Roveri, M. (eds.) FMICS 2010. LNCS, vol. 6371, pp. 198–214. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete Appl. Math. 156(16), 3113–3121 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Boneh, D., Boyen, X.: Short signatures without random oracles and the sdh assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Damgård, I.: On \(\mathit{\Sigma }\)-protocols. Lecture notes for CPT, v. 2Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Kamil Kluczniak
    • 1
  • Jianfeng Wang
    • 2
  • Xiaofeng Chen
    • 2
  • Mirosław Kutyłowski
    • 1
  1. 1.Department of Computer ScienceWrocław University of Science and TechnologyWrocławPoland
  2. 2.State Key Laboratory of Integrated Service Networks (ISN)Xidian UniversityXi’anChina

Personalised recommendations