Advertisement

A New Transitive Signature Scheme

  • Chao Lin
  • Fei Zhu
  • Wei WuEmail author
  • Kaitai Liang
  • Kim-Kwang Raymond Choo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9955)

Abstract

We present a novel design for stateless transitive signature (\(\mathrm {TS}\)) for undirected graph to authenticate dynamically growing graph data. Our construction is built on the widely studied \(\mathrm {ZSS}\) signature technology [19] with bilinear mapping, and using general cryptographic hash functions (e.g., \(\mathrm {SHA}\)-512 and \(\mathrm {MD}6\)). Compared with the existing stateless \(\mathrm {TS}\) schemes for undirected graph in the literature, our scheme is more efficient. The scheme is also proven transitively unforgeable against adaptive chosen-message attack under the \(\mathrm {M2SDH}\) assumption in the random oracle model.

Keywords

\(\mathrm {M2SDH}\) Transitive signature Transitively unforgeability 

Notes

Acknowledgement

This work is supported by National Natural Science Foundation of China (61472083, 61402110), Program for New Century Excellent Talents in Fujian University (JA14067), Distinguished Young Scholars Fund of Fujian (2016J06013) and Fujian Normal University Innovative Research Team (IRTL1207). K. Liang is supported by privacy-aware retrieval and modelling of genomic data (No. 13283250), the Academy of Finland.

References

  1. 1.
    Bellare, M., Neven, G.: Transitive signatures based on factoring and RSA. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, pp. 397–414. Springer, Heidelberg (2002). doi: 10.1007/3-540-36178-2_25 CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Neven, G.: Transitive signatures: new schemes and proofs. IEEE Trans. Inf. Theor. 51(6), 2133–2151 (2005). doi: 10.1007/3-540-36178-2_25 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Boneh, D., Boyen, X.: Short signatures without random oracles. IACR CryptologyePrint Archive 2004, 171 (2004). http://eprint.iacr.org/2004/171
  4. 4.
    Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003). doi: 10.1007/3-540-39200-9_26 CrossRefGoogle Scholar
  5. 5.
    Boyen, X., Waters, B.: Compact group signatures without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 427–444. Springer, Heidelberg (2006). doi: 10.1007/11761679_26 CrossRefGoogle Scholar
  6. 6.
    Boyen, X., Waters, B.: Full-domain subgroup hiding and constant-size group signatures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-71677-8_1 Google Scholar
  7. 7.
    Camacho, P., Hevia, A.: Short transitive signatures for directed trees. IACR Cryptology ePrint Archive 2011, 438 (2011). http://eprint.iacr.org/2011/438
  8. 8.
    Gong, Z., Huang, Z., Qiu, W., Chen, K.: Transitive signature scheme from LFSR. J. Inf. Sci. Eng. 26(1), 131–143 (2010)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. Electronic Colloquium on Computational Complexity (ECCC), 14(053) (2007). http://eccc.hpi-web.de/eccc-reports/2007/TR07-053/index.html
  10. 10.
    Liang, X., Cao, Z., Shao, J., Lin, H.: Short group signature without random. In: Qing, S., Imai, H., Wang, G. (eds.) ICICS 2007. LNCS, vol. 4861, pp. 69–82. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-77048-0_6 CrossRefGoogle Scholar
  11. 11.
    Ma, C., Wu, P., Gu, G.: A new method for the design of stateless transitive signature schemes. In: Shen, H.T., Li, J., Li, M., Ni, J., Wang, W. (eds.) APWeb 2006. LNCS, pp. 897–904. Springer, Heidelberg (2006). doi: 10.1007/11610496_124 CrossRefGoogle Scholar
  12. 12.
    Micali, S., Rivest, R.L.: Transitive Signature Schemes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 236–243. Springer, Heidelberg (2002). doi: 10.1007/3-540-45760-7_16 CrossRefGoogle Scholar
  13. 13.
    Neven, G.: A simple transitive signature scheme for directed trees. Theor. Comput. Sci. 396(1–3), 277–282 (2008). doi: 10.1016/j.tcs.2008.01.042 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Rivest, R.L., Hohenberger, S.R.: The cryptographic impact of groups with infeasible inversion. Masters thesis, MIT (2003)Google Scholar
  15. 15.
    Shahandashti, S.F., Salmasizadeh, M., Mohajeri, J.: A provably secure short transitive signature scheme from bilinear group pairs. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 60–76. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Wang, L., Cao, Z., Zheng, S., Huang, X., Yang, Y.: Transitive signatures from braid groups. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 183–196. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-77026-8_14 CrossRefGoogle Scholar
  17. 17.
    Wei, V.K.: Tight reductions among strong Di e-Hellman assumptions. IACR Cryptology ePrint Archive 2005, 57 (2005). http://eprint.iacr.org/2005/057
  18. 18.
    Yi, X.: Directed transitive signature scheme. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 129–144. Springer, Heidelberg (2007). doi: 10.1007/11967668_9 CrossRefGoogle Scholar
  19. 19.
    Zhang, F., Safavi-Naini, R., Susilo, W.: An efficient signature scheme from bilinear pairings and its applications. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 277–290. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-24632-9_20 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Chao Lin
    • 1
  • Fei Zhu
    • 1
  • Wei Wu
    • 1
    Email author
  • Kaitai Liang
    • 2
  • Kim-Kwang Raymond Choo
    • 3
    • 4
  1. 1.Fujian Provincial Key Laboratory of Network Security and Cryptology, School of Mathematics and Computer ScienceFujian Normal UniversityFuzhouChina
  2. 2.Department of Computer ScienceAalto UniversityEspooFinland
  3. 3.Department of Information Systems and Cyber SecurityUniversity of Texas at San AntonioSan AntonioUSA
  4. 4.School of Information Technology & Mathematical SciencesUniversity of South AustraliaAdelaideAustralia

Personalised recommendations