Towards More Effective Solution Retrieval in IT Support Services Using Systems Log

  • Rongda Zhu
  • Yu Deng
  • Soumitra (Ronnie) Sarkar
  • Kaoutar  El  Maghraoui
  • Harigovind V. Ramasamy
  • Alan Bivens
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9936)

Abstract

Technical support agents working in the IT support services field resolve IT problems. They are often faced with the daunting task of identifying the correct solution document through a search system from large corpora of IT support documents. Based on the observation that system logs may contain critical information for identifying the root cause of IT problems, we explore the idea of automatic query expansion by using system logs as a bridge to link queries with the most relevant documents. Given the original query from a user such as a technical support agent, an intermediate query is first formed by adding key terms extracted from system logs using domain-specific rules. Based on topic models, further key terms are selected from corpora of IT support documents, which are combined with the intermediate query to form the final query. Our experimental results show that expanding queries using system logs together with topic models yields better performance in retrieving relevant IT support documents than using topic models only.

Keywords

Log-aided query expansion Topic model Retrieval IT support services 

References

  1. 1.
    Beeferman, D., Berger, A.: Agglomerative clustering of a search engine query log. In: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2000, pp. 407–416. ACM, New York, NY, USA (2000). http://doi.acm.org/10.1145/347090.347176
  2. 2.
    Billerbeck, B., Scholer, F., Williams, H.E., Zobel, J.: Query expansion using associated queries. In: Proceedings of the Twelfth International Conference on Information and Knowledge Management, CIKM 2003, pp. 2–9. ACM, New York, NY, USA (2003). http://doi.acm.org/10.1145/956863.956866
  3. 3.
    Bilotti, M.W., Katz, B., Lin, J.: What works better for question answering: stemming or morphological query expansion? In: Proceedings of the Information Retrieval for Question Answering (IR4QA) Workshop at SIGIR 2004 (2004)Google Scholar
  4. 4.
    Blei, D., Ng, A., Jordan, M.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003). http://dl.acm.org/citation.cfm?id=944919.944937 MATHGoogle Scholar
  5. 5.
    Blei, D.M.: Probabilistic topic models. Commun. ACM 55(4), 77–84 (2012). http://doi.acm.org/10.1145/2133806.2133826 MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cartright, M.A., Allan, J., Lavrenko, V., McGregor, A.: Fast query expansion using approximations of relevance models. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, CIKM 2010, pp. 1573–1576. ACM, New York, NY, USA (2010). http://doi.acm.org/10.1145/1871437.1871675
  7. 7.
    Chen, L., Wang, Y., Yu, Q., Zheng, Z., Wu, J.: WT-LDA: user tagging augmented LDA for web service clustering. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 162–176. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Cui, H., Wen, J.R., Nie, J.Y., Ma, W.Y.: Query expansion by mining user logs. IEEE Trans. Knowl. Data Eng. 15(4), 829–839 (2003). http://dx.doi.org/10.1109/TKDE.2003.1209002 CrossRefGoogle Scholar
  9. 9.
    ElasticSearch: https://www.elastic.co
  10. 10.
    Halpin, H., Lavrenko, V., St, C.: Relevance feedback between hypertext search and semantic search. In: Proceedings of the Semantic Search Workshop at the World Wide Web Conference (2009)Google Scholar
  11. 11.
    Huang, C.K., Chien, L.F., Oyang, Y.J.: Relevant term suggestion in interactive web search based on contextual information in query session logs. J. Am. Soc. Inf. Sci. Technol. 54(7), 638–649 (2003). http://dx.doi.org/10.1002/asi.10256 CrossRefGoogle Scholar
  12. 12.
    Hull, D.A.: Stemming algorithms: a case study for detailed evaluation. J. Am. Soc. Inf. Sci. 47(1), 70–84 (1996). http://dx.doi.org/10.1002/(SICI)1097--4571(199601)47:1<70:AID-ASI7>3.3.CO;2-Q
  13. 13.
  14. 14.
    Jones, R., Rey, B., Madani, O., Greiner, W.: Generating query substitutions. In: Proceedings of the 15th International Conference on World Wide Web, WWW 2006, pp. 387–396. ACM, New York, NY, USA (2006). http://doi.acm.org/10.1145/1135777.1135835
  15. 15.
    Krovetz, R.: Viewing morphology as an inference process. In: Proceedings of the 16th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 1993, pp. 191–202. ACM, New York, NY, USA (1993). http://doi.acm.org/10.1145/160688.160718
  16. 16.
    Lavrenko, V., Choquette, M., Croft, W.B.: Cross-lingual relevance models. In: Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2002, pp. 175–182. ACM, New York, NY, USA (2002). http://doi.acm.org/10.1145/564376.564408
  17. 17.
    Lavrenko, V., Croft, W.B.: Relevance based language models. In: Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2001, pp. 120–127. ACM, New York, NY, USA (2001). http://doi.acm.org/10.1145/383952.383972
  18. 18.
    Liu, Y., Li, C., Zhang, P., Xiong, Z.: A query expansion algorithm based on phrases semantic similarity. In: 2008 International Symposiums on Information Processing (ISIP), pp. 31–35, May 2008Google Scholar
  19. 19.
  20. 20.
    McCallum, A.K.: Mallet: a machine learning for language toolkit (2002). http://mallet.cs.umass.edu
  21. 21.
    Navigli, R., Velardi, P.: An analysis of ontology-based query expansion strategies. In: Workshop on Adaptive Text Extraction and Mining, Cavtat Dubrovnik, Croatia, 23 September 2003Google Scholar
  22. 22.
    Oliveira, V., Gomes, G., Belém, F., Brandão, W., Almeida, J., Ziviani, N., Gonçalves, M.: Automatic query expansion based on tag recommendation. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, CIKM 2012, pp. 1985–1989. ACM, New York, NY, USA (2012). http://doi.acm.org/10.1145/2396761.2398557
  23. 23.
    Park, L.A.F.: Query expansion using a collection dependent probabilistic latent semantic thesaurus. In: Zhou, Z.-H., Li, H., Yang, Q. (eds.) PAKDD 2007. LNCS (LNAI), vol. 4426, pp. 224–235. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  24. 24.
    Riezler, S., Vasserman, A., Tsochantaridis, I., Mittal, V., Liu, Y.: Statistical machine translation for query expansion in answer retrieval. In: Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics (ACL2007). Prague, Czech Republic (2007). http://www.stefanriezler.com/PAPERS/ACL07.pdf
  25. 25.
  26. 26.
  27. 27.
    Symonds, M., Zuccon, G., Koopman, B., Bruza, P., Sitbon, L.: Term associations in query expansion: a structural linguistic perspective. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM 2013, pp. 1189–1192. ACM, New York, NY, USA (2013). http://doi.acm.org/10.1145/2505515.2507852
  28. 28.
  29. 29.
  30. 30.
    Xu, J., Croft, W.B.: Query expansion using local and global document analysis. In: Proceedings of the 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 1996, pp. 4–11. ACM, New York, NY, USA (1996). http://doi.acm.org/10.1145/243199.243202
  31. 31.
    Yin, Z., Shokouhi, M., Craswell, N.: Query expansion using external evidence. In: Boughanem, M., Berrut, C., Mothe, J., Soule-Dupuy, C. (eds.) ECIR 2009. LNCS, vol. 5478, pp. 362–374. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Rongda Zhu
    • 1
  • Yu Deng
    • 2
  • Soumitra (Ronnie) Sarkar
    • 2
  • Kaoutar  El  Maghraoui
    • 2
  • Harigovind V. Ramasamy
    • 2
  • Alan Bivens
    • 2
  1. 1.Department of Computer ScienceUniversity of Illinois at Urbana ChampaignUrbanaUSA
  2. 2.IBM T.J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations