Semantic Pattern Mining Based Web Service Recommendation

  • Hafida Naïm
  • Mustapha Aznag
  • Nicolas Durand
  • Mohamed Quafafou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9936)


This paper deals with the problem of web service recommendation. We propose a new content-based recommendation system. Its originality comes from the combination of probabilistic topic models and pattern mining to capture the maximal common semantic of sets of services. We define the notion of semantic patterns which are maximal frequent itemsets of topics. In the off-line process, the computation of these patterns is performed by using frequent concept lattices in order to find also the sets of services associated to the semantic patterns. These sets of services are then used to recommend services in the on-line process. We compare the results of the proposed system in terms of precision and normalized discounted cumulative gain with Apache Lucene and SAWSDL-MX2 Matchmaker on real-world data. Our proposition outperforms these two systems.


Web services Recommendation Topic models Formal concept analysis Concept lattice Maximal frequent itemsets 


  1. 1.
    Atkinson, C., Bostan, P., Hummel, O., Stoll, D.: A practical approach to web service discovery and retrieval. In: ICWS, pp. 241–248 (2007)Google Scholar
  2. 2.
    Aznag, M., Quafafou, M., Jarir, Z.: Correlated topic model for web services ranking. IJACSA 4(6), 283–291 (2013)CrossRefGoogle Scholar
  3. 3.
    Aznag, M., Quafafou, M., Jarir, Z.: Leveraging formal concept analysis with topic correlation for service clustering and discovery. In: ICWS (2014)Google Scholar
  4. 4.
    Aznag, M., Quafafou, M., Rochd, E.M., Jarir, Z.: Probabilistic topic models for web services clustering and discovery. In: Villari, M., Zimmermann, W., Lau, K.-K. (eds.) ESOCC 2014. LNCS, vol. 8745, pp. 19–33. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40651-5_3 CrossRefGoogle Scholar
  5. 5.
    Blake, M.B., Nowlan, M.F.: A web service recommender system using enhancing syntactical matching. In: ICWS (2007)Google Scholar
  6. 6.
    Blei, D.M., Lafferty, J.D.: A correlated topic model of science. Ann. Appl. Stat. 1, 17–35 (2007)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Cassar, G., Barnaghi, P., Moessner, K.: Probabilistic matchmaking methods for automated service discovery. TSC 7(4), 654–666 (2013)Google Scholar
  8. 8.
    Durand, N., Quafafou, M.: Approximation of frequent itemset border by computing approximate minimal hypergraph transversals. In: Bellatreche, L., Mohania, M.K. (eds.) DaWaK 2014. LNCS, vol. 8646, pp. 357–368. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-10160-6_32 Google Scholar
  9. 9.
    Durand, N., Quafafou, M.: Frequent itemset border approximation by dualization. In: Hameurlain, A., Küng, J., Wagner, R., Bellatreche, L., Mohania, M. (eds.) Transactions on Large-Scale Data- and Knowledge-Centered Systems XXVI. LNCS, vol. 9670, pp. 32–60. Springer, Heidelberg (2016)CrossRefGoogle Scholar
  10. 10.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical foundations. Springer, Heidelberg (1999)CrossRefMATHGoogle Scholar
  11. 11.
    Grahne, G., Zhu, J.: Fast algorithms for frequent itemset mining using FP-Trees. TKDE 17(10), 1347–1362 (2005)Google Scholar
  12. 12.
    Han, J., Cheng, H., Xin, D., Yan, X.: Frequent pattern mining: current status and future directions. Data Min. Knowl. Disc. 15, 55–86 (2007)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ma, J., Zhang, Y., He, J.: Efficiently finding web services using a clustering semantic approach. In: CSSSIA, pp. 1–8 (2008)Google Scholar
  14. 14.
    Maccatrozzo, V., Ceolin, D., Aroyo, L., Groth, P.: A semantic pattern-based recommender. In: Presutti, V. (ed.) ESWC 2014. CCIS, vol. 475, pp. 182–187. Springer, Cham (2014)Google Scholar
  15. 15.
    Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge discovery. Data Min. Knowl. Disc. 1(3), 241–258 (1997)CrossRefGoogle Scholar
  16. 16.
    Mehta, B., Niederée, C., Stewart, A., Muscogiuri, C., Neuhold, E.J.: An architecture for recommendation based service mediation. In: Bouzeghoub, M., Goble, C., Kashyap, V., Spaccapietra, S. (eds.) ICSNW 2004. LNCS, vol. 3226, pp. 250–262. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-30145-5_15 CrossRefGoogle Scholar
  17. 17.
    Mohebbi, K., Ibrahim, S., Khezrian, M., Munusamy, K., Tabatabaei, S.G.H.: A comparative evaluation of semantic web service discovery approaches. In: iiWAS, pp. 33–39 (2010)Google Scholar
  18. 18.
    Nayak, R., Lee, B.: Web service discovery with additional semantics and clustering. In: WI, pp. 555–558 (2007)Google Scholar
  19. 19.
    Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient mining of association rules using closed itemset lattices. Inf. Syst. 24(1), 25–46 (1999)CrossRefMATHGoogle Scholar
  20. 20.
    Mao, Q., Feng, B., Pan, S.: Modeling user interests using topic model. JATIT 48(1), 600–606 (2013)Google Scholar
  21. 21.
    Ricci, F., Rokach, L., Shapira, B., Kantor, P.B.: Recommender Systems Handbook, 1st edn. Springer, New York (2011)CrossRefMATHGoogle Scholar
  22. 22.
    Sivashanmugam, K., Verma, A., Miller, J.: Adding semantics to web services standards. In: ICWS, pp. 395–401 (2003)Google Scholar
  23. 23.
    Steyvers, M., Griffiths, T.: Latent Semantic Analysis: A Road to Meaning, chap. Probabilistic topic models (2007)Google Scholar
  24. 24.
    Suguna, R., Sharmila, D.: An efficient web recommendation system using collaborative filtering and pattern discovery algorithms. IJCA 70(3), 37–44 (2013)CrossRefGoogle Scholar
  25. 25.
    Xu, G., Zhang, Y., Yi, X.: Modelling user behaviour for web recommendation using LDA model. In: WI-IAT, pp. 529–532 (2008)Google Scholar
  26. 26.
    Yao, L., Sheng, Q.Z., Ngu, A.H.H., Yu, J., Segev, A.: Unified collaborative and content-based web service recommendation. TSC 8(3), 453–466 (2015)Google Scholar
  27. 27.
    Zaki, M., Hsiao, C.J.: Efficient algorithms for mining closed itemsets and their lattice structure. TKDE 17(4), 462–478 (2005)Google Scholar
  28. 28.
    Zheng, Z., Ma, H., Lyu, M.R., King, I.: WSRec: a collaborative filtering based web service recommender system. In: ICWS, pp. 437–444 (2009)Google Scholar
  29. 29.
    Zheng, Z., Ma, H., Lyu, M.R., King, I.: QoS-aware web service recommendation by collaborative filtering. TSC 4(2), 140–152 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Hafida Naïm
    • 1
  • Mustapha Aznag
    • 1
  • Nicolas Durand
    • 1
  • Mohamed Quafafou
    • 1
  1. 1.Aix-Marseille University, CNRSMarseilleFrance

Personalised recommendations