Analysis of Mimed Violin Performance Movements of Neophytes

Patterns, Periodicities, Commonalities and Individualities
  • Federico Visi
  • Esther Coorevits
  • Rodrigo Schramm
  • Eduardo R. Miranda
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9617)


Body movement and embodied knowledge play an important part in how we express and understand music. The gestures of a musician playing an instrument are part of a shared knowledge that contributes to musical expressivity by building expectations and influencing perception. In this study, we investigate the extent in which the movement vocabulary of violin performance is part of the embodied knowledge of individuals with no experience in playing the instrument. We asked people who cannot play the violin to mime a performance along an audio excerpt recorded by an expert. They do so by using a silent violin, specifically modified to be more accessible to neophytes. Preliminary motion data analyses suggest that, despite the individuality of each performance, there is a certain consistency among participants in terms of overall rhythmic resonance with the music and movement in response to melodic phrasing. Individualities and commonalities are then analysed using Functional Principal Component Analysis.


Movement Gesture Body motion Motion capture Violin Musical instrument Performance Motion analysis Periodic quantity of motion 



The authors would like to thank Alexander Refsum Jensenius and all the members of the fourMs - Music, Mind, Motion, Machines research group at the University of Oslo, Norway, for their hospitality and knowledgeable support. Special thanks to all the participants of the study and to Pierre-Emmanuel Largeron for his valuable input.

This study was partially realised under the FWO-project “Foundations of expressive timing control in music”.


  1. 1.
    Altavilla, A., Caramiaux, B., Tanaka, A.: Towards gestural sonic affordances. In: Yeo, W., Lee, K., Sigman, A., H., J., Wakefield, G. (eds.) Proceedings of the International Conference on New Interfaces for Musical Expression, pp. 61–64. Graduate School of Culture Technology, KAIST, Daejeon, Republic of Korea (2013).
  2. 2.
    Amelynck, D., Maes, P.J., Martens, J.P., Leman, M.: Expressive body movement responses to music are coherent, consistent, and low dimensional. IEEE Trans. Cybern. 44(12), 2288–2301 (2014).
  3. 3.
    Bååth, R.: Estimating the distribution of sensorimotor synchronization data: a Bayesian hierarchical modeling approach. Behav. Res. Methods, 1–12 (2015).
  4. 4.
    Burger, B., Thompson, M.R., Luck, G., Saarikallio, S., Toiviainen, P.: Influences of rhythm-and timbre-related musical features on characteristics of music-induced movement. Front. Psychol. 4, 183 (2013).
  5. 5.
    Burger, B., Thompson, M.R., Luck, G., Saarikallio, S.H., Toiviainen, P.: Hunting for the beat in the body: on period and phase locking in music-induced movement. Front. Hum. Neurosci. 8, 1–16 (2014). CrossRefGoogle Scholar
  6. 6.
    Burger, B., Toiviainen, P.: MoCap toolbox-a matlab toolbox for computational analysis of movement data. In: Proceedings of the Sound and Music Computing, pp. 172–178 (2013).
  7. 7.
    Camurri, A., Mazzarino, B., Volpe, G.: Analysis of expressive gesture: the EyesWeb expressive gesture processing library. In: Camurri, A., Volpe, G. (eds.) GW 2003. LNCS (LNAI), vol. 2915, pp. 460–467. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Camurri, A., Volpe, G.: Multimodal analysis of expressive gesture in music performance. In: Solis, J., Ng, K. (eds.) Musical Robots and Interactive Multimodal Systems. STAR, vol. 74, pp. 47–66. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Clarke, E.F.: Ways of Listening: An Ecological Approach to the Perception of Musical Meaning. Oxford University Press, New York (2005)CrossRefGoogle Scholar
  10. 10.
    Coorevits, E., Moelants, D., Maes, P.J., Leman, M.: Studying the effect of tempo on music performance: a multimodal approach. In: 9th Conference on Interdisciplinary Musicology, CIM 2014, Berlin (2014)Google Scholar
  11. 11.
    Dahl, L.: Triggering sounds from discrete air gestures: what movement feature has the best timing? In: Caramiaux, B., Tahiroglu, K., Fiebrink, R., Tanaka, A. (eds.) Proceedings of the International Conference on New Interfaces for Musical Expression, pp. 201–206. Goldsmiths, University of London, London (2014).
  12. 12.
    Dempster, W.T., Gaughran, G.R.L.: Properties of body segments based on size and weight. Am. J. Anat. 120(1), 33–54 (1967). doi: 10.1002/aja.1001200104 CrossRefGoogle Scholar
  13. 13.
    Gibson, E.J.: Where is the information for affordances? Ecol. Psychol. 12(1), 53–56 (2000)CrossRefGoogle Scholar
  14. 14.
    Gibson, J.J.: The theory of affordances. In: Perceiving, Acting, and Knowing, vol. Perceiving, pp. 127–142 (332) (1977)Google Scholar
  15. 15.
    Glowinski, D., Dardard, F., Gnecco, G., Piana, S., Camurri, A.: Expressive non-verbal interaction in a string quartet: an analysis through head movements. J. Multimodal User Interfaces 9(1), 55–68 (2014). CrossRefGoogle Scholar
  16. 16.
    Godøy, R.I., Haga, E., Jensenius, A.R.: Playing “air instruments”: mimicry of sound-producing gestures by novices and experts. In: Gibet, S., Courty, N., Kamp, J.-F. (eds.) GW 2005. LNCS (LNAI), vol. 3881, pp. 256–267. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Godøy, R.I., Leman, M. (eds.): Musical Gestures: Sound, Movement, and Meaning. Routledge, Abingdon (2010)Google Scholar
  18. 18.
    Gritten, A.: Resonant listening. Perform. Res. 15(3), 115–122 (2010). CrossRefGoogle Scholar
  19. 19.
    Gritten, A., King, E. (eds.): Music and Gesture. Ashgate, Farnham (2006)Google Scholar
  20. 20.
    Jensenius, A.R., Skogstad, S.A., Nymoen, K., Tørresen, J., Høvin, M.E.: Reduced displays of multidimensional motion capture data sets of musical performance. In: Proceedings of ESCOM 2009: 7th Triennial Conference of the European Society for the Cognitive Sciences of Music (2009)Google Scholar
  21. 21.
    Leman, M.: Embodied Music Cognition and Mediation Technology. MIT Press, Cambridge (2008)Google Scholar
  22. 22.
    Leman, M., Lesaffre, M., Nijs, L., Deweppe, A.: User-oriented studies in embodied music cognition research. Musicae Sci. 14(2), 203–223 (2010). CrossRefGoogle Scholar
  23. 23.
    MacRitchie, J., Buck, B., Bailey, N.J.: Inferring musical structure through bodily gestures. Musicae Sci. 17(1), 86–108 (2013). CrossRefGoogle Scholar
  24. 24.
    Menin, D., Schiavio, A.: Rethinking musical affordances. Avant III(2), 201–215 (2012)Google Scholar
  25. 25.
    Naveda, L., Leman, M.: The spatiotemporal representation of dance and music gestures using topological gesture analysis (TGA). Music Percept. 28(1), 93–111 (2010)CrossRefGoogle Scholar
  26. 26.
    Ramsay, J.O.: Functional Data Analysis. Wiley, Hoboken (2006)CrossRefGoogle Scholar
  27. 27.
    Visi, F., Coorevits, E., Miranda, E., Leman, M.: Effects of different bow stroke styles on body movements of a viola player: an exploratory study. In: Proceedings of the Joint ICMC–SMC–2014 Conference, Athens, Greece (2014)Google Scholar
  28. 28.
    Visi, F., Schramm, R., Miranda, E.: Gesture in performance with traditional musical instruments and electronics: use of embodied music cognition and multimodal motion capture to design gestural mapping strategies. In: Proceedings of the 2014 International Workshop on Movement and Computing, MOCO 2014. ACM, Paris (2014).

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Federico Visi
    • 1
  • Esther Coorevits
    • 2
  • Rodrigo Schramm
    • 3
  • Eduardo R. Miranda
    • 1
  1. 1.Interdisciplinary Centre for Computer Music Research (ICCMR)Plymouth UniversityPlymouthUK
  2. 2.IPEM – Institute for Psychoacoustics and Electronic MusicGhent UniversityGhentBelgium
  3. 3.Universidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations