BioComputer Music: Generating Musical Responses with Physarum polycephalum-Based Memristors

  • Edward BraundEmail author
  • Eduardo R. Miranda
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9617)


This paper introduces BioComputer Music, an experimental one piano duet between pianist and plasmodial slime mould Physarum polycephalum. This piece harnesses a system we have been developing, which we call BioComputer. BioComputer consists of an analogue circuit that encompasses components grown from the biological computing substrate Physarum polycephalum. Our system listens to the pianist and uses the memristive characteristics of Physarum polycephalum to generate a musical response that it plays through electromagnets placed on the strings of the piano. Such electromagnets set the strings into vibration, producing a distinctive timbre. Physarum polycephalum is an amorphous unicellular organism that has been discovered to exhibit memristive qualities. The memristor changes its resistance according to the amount of charge that has previously flown through. In this paper, we introduce the general concepts, technology and musical composition behind the BioComputer Music piece. We also discuss our rationale for using Physarum polycephalum.


Physarum polycephalum Memristors Unconventional computing for music Computer music Biomusic Biological engineering Biological computing 


  1. 1.
    Adamatzky, A.: Physarum Machines: Computers from Slime Mould, vol. 74. World Scientific, Singapore (2010)Google Scholar
  2. 2.
    Adamatzky, A.: Physarum machines for space missions. Acta Futur. 6, 53–67 (2013)Google Scholar
  3. 3.
    Adamatzky, A., Schubert, T.: Slime mold microfluidic logical gates. Mater. Today 17(2), 86–91 (2014)CrossRefGoogle Scholar
  4. 4.
    Adamatzky, A., Teuscher, C.: From Utopian to Genuine Unconventional Computers. Luniver Press, Beckington (2006)Google Scholar
  5. 5.
    Braund, E.: Unconventional computer music with physarum polycephalum. Master’s thesis, Interdisciplinary for Computer Music Research (ICCMR), Plymouth University (2013)Google Scholar
  6. 6.
    Braund, E., Miranda, E.: Music with unconventional computing: towards a platform for physarum polycephalum sound synthesis (2013)Google Scholar
  7. 7.
    Braund, E., Miranda, E.: Music with unconventional computing: a system for physarum polycephalum sound synthesis. In: Aramaki, M., Derrien, O., Kronland-Martinet, R., Ystad, S. (eds.) CMMR 2013. LNCS, vol. 8905, pp. 175–189. Springer, Heidelberg (2014)Google Scholar
  8. 8.
    Braund, E., Miranda, E.: Music with unconventional computing: towards a step sequencer from plasmodium of physarum polycephalum. In: Johnson, C., Carballal, A., Correia, J. (eds.) EvoMUSART 2015. LNCS, vol. 9027, pp. 15–26. Springer International Publishing, Switzerland (2015)Google Scholar
  9. 9.
    Braund, E., Miranda, E.R.: Unconventional computing in music. In: Proceedings of the 9th Conference on Interdisciplinary Musicology - CIM 2014, Berlin, Germany (2014)Google Scholar
  10. 10.
    Braund, E., Sparrow, R., Miranda, E.R.: Physarum-based memristors for computer music. In: Adamatzky, A. (ed.) Advances in Physarum Machines, vol. 21, pp. 755–775. Springer International Publishing, Switzerland (2016)CrossRefGoogle Scholar
  11. 11.
    Chua, L.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)CrossRefGoogle Scholar
  12. 12.
    Gale, E., Adamatzky, A., de Lacy Costello, B.: Slime mould memristors. BioNanoScience 5, 1–8 (2014)CrossRefGoogle Scholar
  13. 13.
    Gale, E., de Lacy Costello, B., Adamatzky, A.: Observation, characterization and modeling of memristor current spikes (2013). arXiv preprint: arXiv:1302.0771
  14. 14.
    Gale, E., Matthews, O., de Lacy Costello, B., Adamatzky, A.: Beyond Markov chains, towards adaptive memristor network-based music generation (2013). arXiv preprint: arXiv:1302.0785
  15. 15.
    Johnsen, G.K., Lütken, C.A., Martinsen, O.G., Grimnes, S.: Memristive model of electro-osmosis in skin. Phys. Rev. E 83(3), 31916 (2011)CrossRefGoogle Scholar
  16. 16.
    Johnsen, G.K.: An introduction to the memristor-a valuable circuit element in bioelectricity and bioimpedance. J. Electr. Bioimpedance 3(1), 20–28 (2012)Google Scholar
  17. 17.
    Kosta, S.P., Kosta, Y.P., Bhatele, M., Dubey, Y.M., Gaur, A., Kosta, S., Gupta, J., Patel, A., Patel, B.: Human blood liquid memristor. Int. J. Med. Eng. Inform. 3(1), 16–29 (2011)CrossRefGoogle Scholar
  18. 18.
    McPherson, A.: The magnetic resonator piano: electronic augmentation of an acoustic grand piano. J. New Music Res. 39(3), 189–202 (2010)CrossRefGoogle Scholar
  19. 19.
    Miranda, E.: Harnessing the intelligence of physarum polycephalum for unconventional computing-aided musical composition. IJUC 10(3), 251–268 (2014)Google Scholar
  20. 20.
    Miranda, E.: Biocomputer Music. Accessed 12 Feb 2015
  21. 21.
    Miranda, E., Adamatzky, A., Jones, J.: Sounds synthesis with slime mould of physarum polycephalum. J. Bionic Eng. 8(2), 107–113 (2011)CrossRefGoogle Scholar
  22. 22.
    Pershin, Y.V., La Fontaine, S., Di Ventra, M.: Memristive model of amoeba learning. Phys. Rev. E 80(2), 21926 (2009)CrossRefGoogle Scholar
  23. 23.
    Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453(7191), 80–83 (2008)CrossRefGoogle Scholar
  24. 24.
    Tero, A., Kobayashi, R., Nakagaki, T.: Physarum solver: a biologically inspired method of road-network navigation. Phys. Sect. A 363(1), 115–119 (2006)CrossRefGoogle Scholar
  25. 25.
    Tsuda, S., Zauner, K.P., Gunji, Y.P.: Robot control with biological cells. Biosystems 87(2), 215–223 (2007)CrossRefGoogle Scholar
  26. 26.
    Volkov, A., Reedus, J., Mitchell, C.M., Tucket, C., Forde-Tuckett, V., Volkova, M.I., Markin, V.S., Chua, L.: Memristors in the electrical network of Aloe vera L. Plant Signal. Behav. 9(4), e29056 (2014)CrossRefGoogle Scholar
  27. 27.
    Wohlfarth-Bottermann, K.E.: Oscillatory contraction activity in physarum. J. Exp. Biol. 81(1), 15–32 (1979)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (, which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  1. 1.Interdisciplinary Centre for Computer Music Research (ICCMR)Plymouth UniversityPlymouthUK

Personalised recommendations