3CMS: An Interactive Decision System for Live Performance

  • Rodrigo Schramm
  • Helena de Souza Nunes
  • Leonardo de Assis Nunes
  • Federico Visi
  • Eduardo R. Miranda
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9617)

Abstract

A machine system is designed to analyze the musical aspects during the live performance, allowing an interactive and dynamic flow of new expressions and also opening new compositional forms and multimodal methods. The focus of this approach is to measure the expressiveness from distinct characters during the performance of the musical piece while decisions are made by the machine. This multimodal approach is implemented in the musical piece Três Microcanções de Câmara – Essência Pierrot, Atitude Arlequim, (In)Decisão Colombina (3CMS), where audio features and body motion are used by the algorithm to choose a particular musical ending.

Keywords

Multimodal system Machine decision Micro song 

References

  1. 1.
    Boersma, P., Weenink, D.: PRAAT: Doing Phonetics by Computer. Version 5.3.51. http://www.praat.org/
  2. 2.
    Borém, F., Cavazotti., A.: Entrevista com Luciana Monteiro de Castro, Mônica Pedrosa e Margarida Borghoff sobre o Projeto “Resgate da Canção Brasileira”. In: Per Musi, no. 15, pp. 78–86, January 2007Google Scholar
  3. 3.
    Camurri, A., Volpe, G.: Multimodal analysis of expressive gesture in music performance. In: Solis, J., Ng, K. (eds.) Musical Robots and Interactive Multimodal Systems. Springer Tracts in Advanced Robotics, pp. 47–66. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Camurri, A., Volpe, G., De Poli, G., Leman, M.: Communicating expressiveness and affect in multimodal interactive systems. IEEE Multimedia 12(1), 43–53 (2005)CrossRefGoogle Scholar
  5. 5.
    Caramiaux, B., Wanderley, M.M., Bevilacqua, F.: Segmenting and parsing instrumentalists’ gestures. J. New Music Res. 41(1), 13–29 (2012)CrossRefGoogle Scholar
  6. 6.
    Del Picchia, M.: Máscaras: o amor de Dulcinéia. Ediouro, Rio de Janeiro (1987)Google Scholar
  7. 7.
    Eaton, J., Miranda, E.: Real-time notation using brainwave control. In: Sound and Music Computing Conference 2013, Stockholm, Sweden (2013)Google Scholar
  8. 8.
    Ewert, S., Müller, M., Grosche, P.: High resolution audio synchronization using chroma onset features. In: Proceedings of IEEE International Conference on Acoustics. Speech, and Signal Processing (ICASSP), Taipei, Taiwan, pp. 1869–1872 (2009)Google Scholar
  9. 9.
    Fenza, D., Mion, L., Canazza, S., Rodà, A.: Physical movement and musical gestures: a multilevel mapping strategy. In: Proceedings of Sound and Music Computing Conference, Salerno (2005)Google Scholar
  10. 10.
    Glowinski, D., Baron, N., Grandjean, D., Ott, T., Shirole, K., Torres-Eliard, K., Rappaz, M.A.: Analyzing expressive styles and functions of bodily movement in violinist performance. Proceedings of 2014 International Workshop on Movement and Computing - MOCO 2014, pp. 154–155 (2014)Google Scholar
  11. 11.
    Holland, P.W., Welsch, R.E.: Robust regression using iteratively reweighted least-squares. Commun. Stat.: Theor. Methods A6, 813–827 (1977)CrossRefMATHGoogle Scholar
  12. 12.
    Kiefer, B.: Elementos da linguagem musical, 3rd edn. Movimento, Porto Alegre (1979)Google Scholar
  13. 13.
    Kirke, A., Miranda, E.R.: A survey of computer systems for expressive music performance. ACM Comput. Surv. 42(1), 1–41 (2009)CrossRefGoogle Scholar
  14. 14.
    Miranda, E.R., Castet, J.: Guide to Brain-Computer Music Interfacing. Springer, London (2014)CrossRefGoogle Scholar
  15. 15.
    Muller, M., Ewert, S.: Towards timbre-invariant audio features for harmony-based music. IEEE Trans. Audio Speech Lang. Process. 18(3), 649–662 (2010)CrossRefGoogle Scholar
  16. 16.
    Müller, M.: Information Retrieval for Music and Motion. Springer, Berlin (2007)CrossRefGoogle Scholar
  17. 17.
    Nunes, H.S.: A canção brasileira infantil na perspectiva da ficha cdg para análise e composição de canções. Revista Brasileira de Estudos da Canção 1(1), 151–173 (2012)Google Scholar
  18. 18.
    Straus, J.N.: Introdução à Teoria Pós-Tonal. EDUFBA-UNESP, Salvador (2013)Google Scholar
  19. 19.
    Vendramini, J.E.: A commedia dell’arte e sua reoperacionalização. Trans/Form/Ação 24(1), 57–83 (2001)CrossRefGoogle Scholar
  20. 20.
    Visi, F., Coorevits, E., Miranda, E., Leman, M.: Effects of different bow stroke styles on body movements of a viola player: an exploratory study. In: Proceedings of joint ICMC|SMC|2014 Conference, Athens, Greece (2014)Google Scholar
  21. 21.
    Visi, F., Schramm, R., Miranda, E.: Use of body motion to enhance traditional musical instruments. In: Caramiaux, B., Tahiroglu, K., Fiebrink, R., Tanaka, A. (eds.) Proceedings of International Conference on New Interfaces for Musical Expression, Goldsmiths, pp. 601–604. University of London, London, 30th June - 03rd July 2014Google Scholar
  22. 22.
    Visi, F., Schramm, R., Miranda, E.R.: Gesture in performance with traditional musical instruments and electronics: use of embodied music cognition and multimodal motion capture to design gestural mapping strategies. In: Bevilacqua, F., Alaoui, S.F., Françoise, J., Pasquier, P., Schiphorst, T. (eds.) International Workshop on Movement and Computing, MOCO 2014, Paris, France, 16–17 June 2014, p. 100. ACM (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Rodrigo Schramm
    • 1
  • Helena de Souza Nunes
    • 1
  • Leonardo de Assis Nunes
    • 2
  • Federico Visi
    • 3
  • Eduardo R. Miranda
    • 3
  1. 1.Universidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Universidade Federal da BahiaSalvadorBrazil
  3. 3.Plymouth UniversityPlymouthUK

Personalised recommendations