Advertisement

Aerobic Anoxygenic Phototrophs: Four Decades of Mystery

  • Vladimir YurkovEmail author
  • Elizabeth Hughes
Chapter

Abstract

The aerobic anoxygenic phototrophs (AAP) are an important group of bacteria making up large proportions of bacterial communities in both marine and freshwater systems. They thrive in the extreme conditions of hot springs, hypersaline spring systems, and hydrothermal vents and in the presence of high concentrations of toxic metal(loid) oxides. They likely evolved from the purple non-sulfur bacteria, to fill an oxygenated environmental niche, carrying out oxygen-dependant anoxygenic photosynthesis. Investigations into the ecological significance of AAP are in their infancy, although some speculations have now been proposed. Additionally, modern studies are beginning to touch the paradox that is bacteriochlorophyll a synthesis in the presence of oxygen as well as the role of abundant carotenoids in AAP. The presence of numerous AAP in every environment tested, in addition to their unique photosynthetic arrangement, are mysteries that have garnered much attention among scientists since their discovery.

Keywords

Photosynthetic Electron Transport Chain Anoxygenic Photosynthesis Anoxygenic Phototroph Oxygenic Phototroph AAPAerobic Anoxygenic Phototroph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research was supported by an NSERC Canada Discovery Grant and GETS funds from the University of Manitoba held by Dr. V. Yurkov.

References

  1. Beatty JT (2005) On the natural selection and evolution of the aerobic phototrophic bacteria. In: Govindjee JT, Beatty HG, Allan JF (eds) Discoveries in photosynthesis. Springer, pp 1099–1104Google Scholar
  2. Boeuf D, Cottrell MT, Kirchman DL, Lebaron P, Jeanthon C (2013) Summer community structure of aerobic anoxygenic phototrophic bacteria in the western arctic ocean. FEMS Microbiol Ecol. doi: 10.1111/1574-6941.12130 PubMedGoogle Scholar
  3. Boldareva-Nuianzina EN, Bláhová Z, Sobotka R, Koblížek M (2013) Distribution and origin of oxygen-dependent and oxygen-independent forms of mg-protoporphyrin monomethylester cyclase among phototrophic proteobacteria. Appl Environ Microbiol 79(8):2596–2604CrossRefPubMedPubMedCentralGoogle Scholar
  4. Csotonyi JT, Stackebrandt E, Swiderski J, Schumann P, Yurkov V (2011) An alphaproteobacterium capable of both aerobic and anaerobic anoxygenic photosynthesis but incapable of photoautotrophy: Charonomicrobium ambiphototrophicum, gen. nov., sp. nov. Photosynth Res 107:257–268CrossRefPubMedGoogle Scholar
  5. Csotonyi JT, Maltman C, Yurkov V (2014) Influence of tellurite on synthesis of bacteriochlorophyll and carotenoids in aerobic anoxygenic phototrophic bacteria. Trends Photochem Photobiol 16:1–17Google Scholar
  6. Csotonyi JT, Maltman C, Swiderski J, Stackebrandt E, Yurkov V (2015) Extremely ‘Vanadiphilic’ multiple metal-resistant and halophilic aerobic anoxygenic phototrophs, strains EG13 and EG8, from hypersaline springs in Canada. Extremophiles 19:127–134CrossRefPubMedGoogle Scholar
  7. Cŭperová Z, Holzer E, Salka I, Sommaruga R, Koblížek M (2013) Temporal changes and altitudinal distribution of aerobic anoxygenic phototrophs in mountain lakes. Appl Environ Microbiol 79(20):6439–6446CrossRefPubMedPubMedCentralGoogle Scholar
  8. Fauteux L, Cottrell M, Kirchman DL, Borrego CM, Garcia-Chaves MC, del Giorgio PA (2015) Patterns in abundance, cell size and pigment content of aerobic anoxygenic phototrophic bacteria along environmental gradients in Northern Lakes. PLoS One. doi: 10.1371/journal.pone.0124035 PubMedPubMedCentralGoogle Scholar
  9. Ferrera I, Borrego CM, Salazar G, Gasol JM (2014) Marked seasonality of aerobic anoxygenic phototrophic bacteria in the coastal NW Mediterranean sea as revealed by cell abundance, pigment concentration and pyrosequencing of pufM gene. Environ Microbiol 16(9):2953–2965CrossRefPubMedGoogle Scholar
  10. Garcia-Chaves MC, Cottrell DL, Derry AM, Bogard MJ, del Giorgio PA (2015) Major contribution of both zooplankton and protists to the top-down regulation of freshwater aerobic anoxygenic phototrophic bacteria. Aquat Microb Ecol 76:71–83. doi: 10.3354/ame01770 CrossRefGoogle Scholar
  11. Garcia-Chaves M, Cottrell MT, Kirchman DL, Ruiz-González C, del Giorgio PA (2016) Single-cell activity of freshwater aerobic anoxygenic phototrophic bacteria and their contribution to biomass production. ISME. doi: 10.1038/ismej.2015.242 Google Scholar
  12. Hauruseu D, Koblížek M (2012) Influence of light on carbon utilization in aerobic anoxygenic phototrophs. Appl Environ Microbiol 78(20):7414–7419CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hebermehl M, Klug G (1998) Effect of oxygen on translation and posttranslational steps in expression of photosynthesis genes in Rhodobacter capsulatus. J Bacteriol 180(15):3983–3987PubMedPubMedCentralGoogle Scholar
  14. Jung HJ, Cha IT, Yim KJ, Song HS, Cho K, Kim D, Lee HW, Lee JK, Seo MJ, Roh SW, Lee SJ (2014) Citrimicrobium luteum gen. nov., sp. nov., aerobic anoxygenic phototrophic bacterium isolated from the gut of a sea cucumber Stichopus japonicas. J Microbiol 52(10):819–824CrossRefPubMedGoogle Scholar
  15. Kaschner M, Loeschcke A, Krause J, Minh BQ, Heck A, Endres S, Svensson V, Wirtz A, von Haeseler A, Jaeger KE, Drepper T, Krauss U (2014) Discover of the first light-dependent protochlorophyllide oxidoreductase in anoxygenic phototrophic bacteria. Mol Microbiol 93(5):1066–1078CrossRefPubMedGoogle Scholar
  16. Koblížek M (2015) Ecology of aerobic anoxygenic phototrophs in aquatic environments. FEMS Microbiol Rev. doi: 10.1093/femsre/fuv032 PubMedGoogle Scholar
  17. Lechner U, Brodkorb D, Geyer R, Hause G, Härtig C, Auling G, Fayolle-Guichard F, Piveteau P, Müller R, Rohwerder T (2007) Aquincola tertiaricrbonis gen. nov., sp. nov., a tertiary butyl moiety-degrading bacterium. IJSEM 57:1295–1303PubMedGoogle Scholar
  18. Lehours AC, Jeanthon C (2015) The hydrological context determines the beta-diversity of aerobic anoxygenic phototrophic bacteria in European arctic seas but does not favor endemism. Front Microbiol 6(638)Google Scholar
  19. Li X, Koblížek M, Feng F, Li Y, Jian J, Zeng Y (2013) Whole-genome sequence of a freshwater aerobic anoxygenic phototroph, Porphyrobacter sp. Strain AAP82, isolated from the Huguangyan Maar Lake in Southern China. Genome Announc 1(2):e0007213Google Scholar
  20. Maltman C, Yurkov V (2014) The impact of tellurite on highly resistant marine bacteria and strategies for its reduction. Int J Environ Eng Nat Res 1(3):109–119Google Scholar
  21. Maltman C, Yurkov V (2015) The effect of tellurite on highly resistant freshwater aerobic anoxygenic phototrophs and their strategies for reduction. Microorganisms 3:826–838CrossRefPubMedPubMedCentralGoogle Scholar
  22. Margesin R, Zhang DC (2013) Humitalea rosea gen. nov., sp. nov., an aerobic bacteriochlorophyll-containing bacterium of the family Acetobacteraceae isolated from soil. IJSEM 63:1411–1416PubMedGoogle Scholar
  23. Mašín M, Cŭperová Z, Hojerová E, Sallka I, Grossart HP, Koblížek M (2012) Distribution of aerobic anoxygenic phototrophic bacteria in glacial lakes of Northern Europe. Aquat Microbial Ecol 66:77–86CrossRefGoogle Scholar
  24. Nuyanzina-Boldareva EN, Gorlenko VM (2014) Roseibacula alcaliphilum gen. nov. sp. nov., a new alkaliphilic aerobic anoxygenic phototrophis bacterium from a meromictic soda lake doroninskoe (East Siberia, Russia). Microbiology 83(4):381–390CrossRefGoogle Scholar
  25. Rathgeber C, Beatty JT, Yurkov V (2004) Aerobic phototrophic bacteria: new evidence for the diversity, ecological importance and applied potential of this previously overlooked group. Photosynth Res 81:113–128CrossRefGoogle Scholar
  26. Rathgeber C, Yurkova N, Stackebrandt E, Schumann P, Beatty JT, Yurkov V (2005) Rosiecyclus mahoneyensis gen. nov., sp. nov., an aerobic phototrophic bacterium isolated from a meromictic lake. IJSEM 55:1597–1603PubMedGoogle Scholar
  27. Rathgeber C, Alric J, Hughes E, Vermeglio A, Yurkov V (2012) The photosynthetic apparatus and photoinduced electron transfer in the aerobic phototrophic bacteria Roseicyclus mahoneyensis and Porphyrobacter meromictius. Photosynth Res 110(3):193–203CrossRefPubMedGoogle Scholar
  28. Ritchie AE, Johnson ZI (2012) Abundance and genetic diversity of aerobic anoxygenic phototrophic bacteria of coastal regions of the Pacific Ocean. Appl Environ Microbiol 78:2858–2866Google Scholar
  29. Rohwerder T, Müller RH, Weichler T, Schuster J, Hübschmann T, Müller S, Harms H (2013) Cultivation of Aquincola tertiaricarbonis L108 on the fuel oxygenate tert-butyl alcohol induces aerobic anoxygenic photosynthesis at extremely low feeding rates. Microbiology 159:2180–2190CrossRefPubMedGoogle Scholar
  30. Salka I, Srivastava A, Allgaier M, Grossart HP (2014) The draft genome sequence of Sphingomonas sp. Strain FukuSWIS1, obtained from acidic lake grosse fuchskuhle, indicates photoheterotrophy and a potential for humic matter degradation. Genome Announc 2(6)Google Scholar
  31. Sato-Takabe Y, Hamasaki K, Suzuki K (2012) Photosynthetic characteristics of marine aerobic anoxygenic phototrophic bacteria Roseobacter and Erythrobacter strains. Arch Microbiol 194:331–341CrossRefPubMedGoogle Scholar
  32. Sato-Takabe Y, Hamasaki K, Suzuki K (2014) Photosynthetic competence of the marine aerobic anoxygenic phototrophic bacterium Roseobacter sp. under organic substrate limitation. Microbes Environ 29(1):100–103CrossRefPubMedPubMedCentralGoogle Scholar
  33. Sato-Takabe Y, Suzuki S, Shishikura R, Hamasaki K, Tada Y, Kataoka T, Yokokawa T, Yoshie N, Suzuki S (2015) Spatial distribution and cell size of aerobic anoxygenic phototrophic bacteria in the Uwa Sea, Japan. J Oceanogr 71:151–159CrossRefGoogle Scholar
  34. Selyanin V, Hauruseu D, Koblížek M (2015) The variability of light harvesting complexes in aerobic anoxygenic phototrophs. Photosynth Res. doi: 10.1007/s11120-015-0197-7 PubMedGoogle Scholar
  35. Shiba T (1991) Roseobacter litoralis gen. nov., sp. nov., and Roseobacter denitrificans sp. nov., aerobic pink-pigmented bacteria which contain bacteriochlorophyll a. Syst Appl Microbiol 14(2):140–145CrossRefGoogle Scholar
  36. Shiba T, Simidu U (1982) Erythrobacter longus gen. nov., sp. nov., an aerobic bacterium which contains bacteriochlorophyll a. Int J Syst Bacteriol 32:211–217CrossRefGoogle Scholar
  37. Shiba T, Simidu U, Taga N (1979) Distribution of aerobic bacteria which contain bacteriochlorophyll a. Appl Environ Microbiol 38:43–45PubMedPubMedCentralGoogle Scholar
  38. Sieracki ME, Gilg IC, Their IC, Poulton NJ, Goericke R (2006) Distribution of planktonic aerobic photoheterotrophic bacteria in the northwest Atlantic. Limnol Oceanogr 51:38–46CrossRefGoogle Scholar
  39. Šlouf V, Fuciman M, Dulebo A, Kaftan D, Koblížek M, Frank HA, Polívka T (2013) Carotenoid charge transfer states and their role in energy transfer processes in LH1-RC complexes from aerobic anoxygenic phototrophs. J Phys Chem 117:10987–10999Google Scholar
  40. Spring S, Lunsdorf H, Fuchs BM, Tindall BJ (2009) The photosynthetic apparatus and it regulation in the aerobic gammaproteobacterium Congregibacter litoralis gen. nov., sp. nov. PLoS One 4(3), e4866CrossRefPubMedPubMedCentralGoogle Scholar
  41. Stegman MR, Cottrell MT, Kirchman DL (2014) Leucine incorporation by aerobic anoxygenic phototrophic bacteria in the Delaware estuary. ISME J 8:2339–2348CrossRefPubMedPubMedCentralGoogle Scholar
  42. Stiefel P, Zambelli T, Vorholt JA (2013) Isolation of optically targeted single bacteria by application of fluidic force microscopy to aerobic anoxygenic phototrophs from the phyllosphere. Appl Environ Microbiol 79(16):4895–4905CrossRefPubMedPubMedCentralGoogle Scholar
  43. Suzuki T, Muroga Y, Takahama M, Nishimura Y (1999) Roseivivax halodurans gen. nov., sp. nov. and Roseivivax halotolerans sp. nov., aerobic bacteriochlorophyll-containing bacteria isolated from a saline lake. Int J Syst Bact 49:629–634Google Scholar
  44. Tang K, Zong R, Zhang F, Xiao N, Jiao N (2010) Characterization of the photosynthetic apparatus and proteome of Roseobacter denitrificans. Curr Microbiol 60:124–133CrossRefPubMedGoogle Scholar
  45. Xiao N, Liu Y, Liu X, Gu Z, Jiao N, Liu H, Zhou Y, Shen L (2015) Blastomonas aquatica sp. nov., a bacteriochlorophyll-containing bacterium isolated from lake water. IJSEM 65:1653–1658PubMedGoogle Scholar
  46. Yurkov V (2006) Aerobic phototrophic proteobacteria. In: Dworkin M, Falkow S, Rosenberg F, Schleifer KH, Stackebrandt E (eds) Prokaryotes, vol 5, 3rd edn. Springer, New York, pp 562–584Google Scholar
  47. Yurkov V, Beatty JT (1998) Aerobic anoxygenic phototrophic bacteria. Microbiol Mol Biol Rev 62:695–724PubMedPubMedCentralGoogle Scholar
  48. Yurkov V, Csotonyi J (2003) Aerobic anoxygenic phototrophs and heavy metalloid reducers from extreme environments. Recent Res Dev Bacteriol 1:247–300Google Scholar
  49. Yurkov V, Csotonyi J (2009) New light on aerobic anoxygenic photosynthesis. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) The purple phototrophic bacteria. Springer Science+Business Media B.V., pp 31–55Google Scholar
  50. Yurkov VV, Gemerden H (1993) Impact of light/dark regimen on growth rate, biomass formation and bacteriochlorophyll synthesis in Erythromicrobium hydrolyticum. Arch Microbiol 159:84–89CrossRefGoogle Scholar
  51. Yurkov VV, Gorlenko VM (1990) Erythrobacter sibiricus sp. nov., a new freshwater aerobic bacterial species containing bacteriochlorophyll a. Microbiol (New York) 59(1):120–126Google Scholar
  52. Yurkov VV, Gorlenko VM (1992a) A new genus of freshwater aerobic bacteriochlorophyll a-containing bacteria, Roseococcus gen. nov. Microbiol (New York) 60(5):902–907Google Scholar
  53. Yurkov VV, Gorlenko VM (1992b) New species of aerobic bacteria from the genus Erythromicrobium containing bacteriochlorophyll a. Microbiol (New York) 61(2):248–255Google Scholar
  54. Yurkov V, Hughes E (2013) Genes associated with the peculiar phenotypes of the aerobic anoxygenic phototrophs. In: Beatty JT, Jacquot JP, Gadal P (eds) Genome evolution of photosynthetic bacteria, vol 66. Elsevier, pp 327–358Google Scholar
  55. Yurkov V, Gad’on N, Drews G (1993a) The major part of polar carotenoids of the aerobic bacteria Roseococcus thiosulfatophilus, RB3 and Erythromicrobium ramosum, E5 is not bound to the bacteriochlorophyll a complexes of the photosynthetic apparatus. Arch Microbiol 160:372–376CrossRefGoogle Scholar
  56. Yurkov VV, Gorlenko VM, Kompantseva EI (1993b) A new type of freshwater aerobic orange colored bacterium Erythromicrobium gen. nov., containing bacteriochlorophyll a. Microbiol (New York) 61(2):256–260Google Scholar
  57. Yurkov V, Stackebrandt E, Holmes A, Fuerst JA, Hugenholtz P, Golecki J, Gorlenko VM, Kompantseva EI, Drews G (1994) Phylogenetic positions of novel aerobic, bacteriochlorophyll a-containing bacteria and description of Roseococcus thiosulfatophilus gen. nov., sp. nov., Erythromicrobium ramosum gen nov., sp. nov., and Erythrobacter litoralis sp. nov. Int J Syst Bacteriol 44:427–434CrossRefPubMedGoogle Scholar
  58. Yurkov V, Stackebrandt E, Buss O, Verméglio A, Gorlenko V, Beatty JT (1997) Reorganization of the genus Erythromicrobium: description of “Erythromicrobium sibiricum” as Sandaracinobacter sibiricus gen. nov., sp. nov., and of “Erythromicrobium ursincola” as Erythromonas ursincola gen. nov., sp. nov. Int J Syst Bacteriol 47:1172–1178CrossRefPubMedGoogle Scholar
  59. Zeng Y, Feng F, Liu Y, Li Y, Koblížek M (2013a) Genome sequences and photosynthesis gene cluster composition of a freshwater aerobic anoxygenic phototroph, Sandarakinorhabdus sp. Strain AAP62, isolated from the Shahu Lake in Ningxia, China. Genome Announc 1(1)Google Scholar
  60. Zeng Y, Koblížek M, Feng F, Liu Y, Wu Z, Jian J (2013b) Whole-genome sequencing of an aerobic anoxygenic phototroph, Blastomonas sp. Strain AAP53, isolated from a freshwater desert lake in inner Mongolia. Genome Announc 1(2)Google Scholar
  61. Zeng Y, Selyanin V, Lukeš M, Dean J, Kaftan D, Feng F, Koblížek M (2015) Characterization of the microaerophilic, bacteriochlorophyll a-containing bacterium Gemmatimonas phototrophica sp. nov., and emended descriptions of the genus Gemmatimonas and Gemmatimonas aurantiaca. IJSEM 65:2410–2419PubMedGoogle Scholar
  62. Zheng Q, Zhang R, Koblížek M, Boldareva EN, Yurkov V, Yan S, Jiao N (2011) Diverse arrangement of photosynthetic gene clusters in aerobic anoxygenic phototrophic bacteria. PLoS ONE 6(9):e25050. doi: 10.1371/journal.pone.0025050
  63. Zheng Q, Liu Y, Steindler L, Jiao N (2015) Pyrosequencing analysis of aerobic anoxygenic phototrophic bacterial community structure in the oligotrophic Western Pacific Ocean. FEMS Microbiol Lett. doi: 10.1093/femsle/fnv034 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of MicrobiologyUniversity of ManitobaWinnipegCanada

Personalised recommendations