Engineering Photosynthetic α-Proteobacteria for the Production of Recombinant Proteins and Terpenoids

  • Achim Heck
  • Thomas DrepperEmail author


Phototrophic non-sulfur purple α-proteobacteria are able to harvest sunlight and to fix atmospheric carbon dioxide and dinitrogen. Consequently, these microbes are used as model organisms for the investigation of regulation and activity of the photosynthesis complexes, the ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) as well as the nitrogenase and hydrogenase enzyme complexes. In addition, this group of prokaryotic phototrophs has emerged as microbial production chassis for the synthesis of recombinant proteins and natural products. To this end, a versatile set of different expression tools has been developed allowing the functional expression of single genes as well as the transfer of complete metabolic pathways. This review provides an overview of different strategies to engineer photosynthetic α-proteobacteria, especially the two most commonly employed representatives Rhodobacter capsulatus and Rhodobacter sphaeroides, for the production of difficult-to-express proteins and terpenoids. Unique physiological properties of these alternative production hosts are discussed in the context of respective production processes. Furthermore, synthetic biology tools applicable for heterologous gene expression and establishment of combinatorial biosynthetic pathways in phototrophic α-proteobacteria are described. Finally, the potential of phototrophic bacteria in future bioeconomic production routes is briefly discussed.


Rhodobacter Rhodospirillum Rhodovulum α-Proteobacteria ICM Protein expression Expression vector Expression of clustered genes Promoter Synthetic biology Membrane proteins GPCR Redox proteins Membrane anchor Combinatorial biosynthesis Terpenoids Carotenoids 



Research in the authors’ laboratories is supported by the Ministry of Innovation, Science and Research of the German State of North Rhine-Westphalia MIWF (Research and Technology Platform ExpressO, NRW Strategieprojekt BioSC), the German Federal Ministry of Education and Research BMBF (ExpresSys, HT-ENZ), and the German Research Foundation DFG (Cluster of Excellence on Plant Sciences CEPLAS). Further, the authors would like to thank Anita Loeschcke, Stephan Thies, and Karl-Erich Jaeger for the critical revision of the manuscript.


  1. Adams PG, Hunter CN (2012) Adaptation of intracytoplasmic membranes to altered light intensity in Rhodobacter sphaeroides. Biochim Biophys Acta 1817:1616–1627PubMedCrossRefGoogle Scholar
  2. Allen JP, Feher G, Yeates TO, Komiya H, Rees DC (1987) Structure of the reaction center from Rhodobacter sphaeroides R-26: the protein subunits. Proc Natl Acad Sci U S A 84:6162–6166PubMedPubMedCentralCrossRefGoogle Scholar
  3. Arechaga I, Miroux B, Karrasch S, Huijbregts R, de Kruijff B, Runswick MJ, Walker JE (2000) Characterisation of new intracellular membranes in Escherichia coli accompanying large scale over-production of the b subunit of F1F0 ATP synthase. FEBS Lett 482:215–219PubMedCrossRefGoogle Scholar
  4. Arendt P, Pollier J, Callewaert N, Goossens A (2016) Synthetic biology for production of natural and new-to-nature terpenoids in photosynthetic organisms., Plant J 87:16–37Google Scholar
  5. Arvani S, Markert A, Loeschcke A, Jaeger K-E, Drepper T (2012) A T7 RNA polymerase-based toolkit for the concerted expression of clustered genes. J Biotechnol 159:162–171PubMedCrossRefGoogle Scholar
  6. Autenrieth C, Ghosh R (2015) Random mutagenesis and overexpression of rhodopin-3,4-desaturase allows the production of highly conjugated carotenoids in Rhodospirillum rubrum. Arch Biochem Biophys 572:134–141PubMedCrossRefGoogle Scholar
  7. Barbieri MR, Kerber NL, Pucheu NL, Tadros MH, García AF (2002) Effect of light and oxygen and adaptation to changing light conditions in a photosynthetic mutant in which the LHII complex of Rhv. sulfidophilum was heterologously expressed in a strain of Rb. capsulatus whose puc operon was deleted. Curr Microbiol 45:209–216CrossRefGoogle Scholar
  8. Beekwilder J, van Houwelingen A, Cankar K, van Dijk AD, de Jong RM, Stoopen G, Bouwmeester H, Achkar J, Sonke T, Bosch D (2014) Valencene synthase from the heartwood of Nootka cypress (Callitropsis nootkatensis) for biotechnological production of valencene. Plant Biotechnol J 12:174–182PubMedCrossRefGoogle Scholar
  9. Bélanger G, Gingras G (1988) Structure and expression of the puf operon messenger RNA in Rhodospirillum rubrum. J Biol Chem 263:7639–7645PubMedGoogle Scholar
  10. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bernaudat F, Frelet-Barrand A, Pochon N, Dementin S, Hivin P, Boutigny S, Rioux JB, Salvi D, Seigneurin-Berny D, Richaud P, Joyard J, Pignol D, Sabaty M, Desnos T, Pebay-Peyroula E, Darrouzet E, Vernet T, Rolland N (2011) Heterologous expression of membrane proteins: choosing the appropriate host. PLoS One 6, e29191PubMedPubMedCentralCrossRefGoogle Scholar
  12. Berry EA, Huang L-S, Saechao LK, Pon NG, Valkova-Valchanova M, Daldal F (2004) X-ray structure of Rhodobacter capsulatus cytochrome bc 1: comparison with its mitochondrial and chloroplast counterparts. Photosynth Res 81:251–275PubMedCrossRefGoogle Scholar
  13. Breitmaier E (2006) Terpenes: flavors, fragrances, pharmaca, pheromones. Wiley-VCH Verlag GmbH & Co, KGaACrossRefGoogle Scholar
  14. Butzin NC, Owen HA, Collins MLP (2010) A new system for heterologous expression of membrane proteins: Rhodospirillum rubrum. Protein Expr Purif 70:88–94PubMedCrossRefGoogle Scholar
  15. Chang C-H, el-Kabbani O, Tiede D, Norris J, Schiffer M (1991) Structure of the membrane-bound protein photosynthetic reaction center from Rhodobacter sphaeroides. Biochemistry 30:5352–5360Google Scholar
  16. Cheng D, Wang R, Prather KJ, Chow KL, Hsing I-M (2015a) Tackling codon usage bias for heterologous expression in Rhodobacter sphaeroides by supplementation of rare tRNAs. Enzyme Microb Technol 72:25–34PubMedCrossRefGoogle Scholar
  17. Cheng L, Chen G, Ding G, Zhao Z, Dong T, Hu Z (2015b) Overexpression of pucC improves the heterologous protein expression level in a Rhodobacter sphaeroides expression system. Genet Mol Res 14:4058–4067PubMedCrossRefGoogle Scholar
  18. Chi SC, Mothersole DJ, Dilbeck P, Niedzwiedzki DM, Zhang H, Qian P, Vasilev C, Grayson KJ, Jackson PJ, Martin EC, Li Y, Holten D, Hunter CN (2015) Assembly of functional photosystem complexes in Rhodobacter sphaeroides incorporating carotenoids from the spirilloxanthin pathway. Biochim Biophys Acta 1847:189–201PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chirino AJ, Lous EJ, Huber M, Allen JP, Schenck CC, Paddock ML, Feher G, Rees DC (1994) Crystallographic analyses of site-directed mutants of the photosynthetic reaction center from Rhodobacter sphaeroides. Biochemistry 33:4584–4593PubMedCrossRefGoogle Scholar
  20. Chistoserdov AY, Chistoserdova LV, McIntire WS, Lidstrom ME (1994) Genetic organization of the mau gene cluster in Methylobacterium extorquens AM1: complete nucleotide sequence and generation and characteristics of mau mutants. J Bacteriol 176:4052–4065PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chory J, Donohue TJ, Varga AR, Staehelin LA, Kaplan S (1984) Induction of the photosynthetic membranes of Rhodopseudomonas sphaeroides: biochemical and morphological studies. J Bacteriol 159:540–554PubMedPubMedCentralGoogle Scholar
  22. Daniels GA, Drews G, Saier MH Jr (1988) Properties of a Tn5 insertion mutant defective in the structural gene (fruA) of the fructose-specific phosphotransferase system of Rhodobacter capsulatus and cloning of the fru regulon. J Bacteriol 170:1698–1703PubMedPubMedCentralCrossRefGoogle Scholar
  23. Davies FK, Jinkerson RE, Posewitz MC (2015) Toward a photosynthetic microbial platform for terpenoid engineering. Photosynth Res 123:265–284PubMedCrossRefGoogle Scholar
  24. de Smet L, Kostanjevecki V, Guisez Y, van Beeumen J (2001) A novel system for heterologous expression of flavocytochrome c in phototrophic bacteria using the Allochromatium vinosum rbcA promoter. Arch Microbiol 176:19–28PubMedCrossRefGoogle Scholar
  25. Ditta G, Stanfield S, Corbin D, Helinski DR (1980) Broad host range DNA cloning system for Gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci U S A 77:7347–7351PubMedPubMedCentralCrossRefGoogle Scholar
  26. Ditta G, Schmidhauser T, Yakobson E, Lu P, Liang X-W, Finlay DR, Guiney D, Helinski DR (1985) Plasmids related to the broad host range vector, pRK290, useful for gene cloning and for monitoring gene expression. Plasmid 13:149–153PubMedCrossRefGoogle Scholar
  27. Drepper T, Arvani S, Rosenau F, Wilhelm S, Jaeger K-E (2005) High-level transcription of large gene regions: a novel T7 RNA-polymerase-based system for expression of functional hydrogenases in the phototrophic bacterium Rhodobacter capsulatus. Biochem Soc Trans 33:56–58PubMedCrossRefGoogle Scholar
  28. Duport C, Meyer C, Naud I, Jouanneau Y (1994) A new gene expression system based on a fructose-dependent promoter from Rhodobacter capsulatus. Gene 145:103–108PubMedCrossRefGoogle Scholar
  29. Elena C, Ravasi P, Castelli ME, Peiru S, Menzella HG (2014) Expression of codon optimized genes in microbial systems: current industrial applications and perspectives. Front Microbiol 5:21Google Scholar
  30. Elofsson A, von Heijne G (2007) Membrane protein structure: prediction versus reality. Annu Rev Biochem 76:125–140PubMedCrossRefGoogle Scholar
  31. Elsen S, Colbeau A, Chabert J, Vignais PM (1996) The hupTUV operon is involved in negative control of hydrogenase synthesis in Rhodobacter capsulatus. J Bacteriol 178:5174–5181PubMedPubMedCentralCrossRefGoogle Scholar
  32. Elsen S, Jaubert M, Pignol D, Giraud E (2005) PpsR: a multifaceted regulator of photosynthesis gene expression in purple bacteria. Mol Microbiol 57:17–26PubMedCrossRefGoogle Scholar
  33. Erbakan M, Shen Y-X, Grzelakowski M, Butler PJ, Kumar M, Curtis WR (2014) Molecular cloning, overexpression and characterization of a novel water channel protein from Rhodobacter sphaeroides. PLoS One 9, e86830PubMedPubMedCentralCrossRefGoogle Scholar
  34. Erbakan M, Curtis BS, Nixon BT, Kumar M, Curtis WR (2015) Advancing Rhodobacter sphaeroides as a platform for expression of functional membrane proteins. Protein Expr Purif 115:109–117PubMedCrossRefGoogle Scholar
  35. Ermler U, Fritzsch G, Buchanan SK, Michel H (1994) Structure of the photosynthetic reaction centre from Rhodobacter sphaeroides at 2.65 Å resolution: cofactors and protein-cofactor interactions. Structure 2:925–936PubMedCrossRefGoogle Scholar
  36. Essen L-O (2002) Structural genomics of “non-standard” proteins: a chance for membrane proteins? Gene Funct Dis 3:39–48CrossRefGoogle Scholar
  37. Esser L, Gong X, Yang S, Yu L, Yu C-A, Xia D (2006) Surface-modulated motion switch: capture and release of iron–sulfur protein in the cytochrome bc 1 complex. Proc Natl Acad Sci U S A 103:13045–13050PubMedPubMedCentralCrossRefGoogle Scholar
  38. Ettema TJG, Andersson SGE (2009) The α-proteobacteria: the Darwin finches of the bacterial world. Biol Lett 5:429–432PubMedPubMedCentralCrossRefGoogle Scholar
  39. Fedotova Y, Zeilstra-Ryalls J (2014) Analysis of the role of PrrA, PpsR, and FnrL in intracytoplasmic membrane differentiation of Rhodobacter sphaeroides 2.4.1 using transmission electron microscopy. Photosynth Res 119:283–290PubMedCrossRefGoogle Scholar
  40. Fodor BD, Kovács ÁT, Csáki R, Hunyadi-Gulyás É, Klement É, Maróti G, Mészáros LS, Medzihradszky KF, Rákhely G, Kovács KL (2004) Modular broad-host-range expression vectors for single-protein and protein complex purification. Appl Environ Microbiol 70:712–721PubMedPubMedCentralCrossRefGoogle Scholar
  41. Fowler GJ, Gardiner AT, Mackenzie RC, Barratt SJ, Simmons AE, Westerhuis WH, Cogdell RJ, Hunter CN (1995) Heterologous expression of genes encoding bacterial light-harvesting complexes in Rhodobacter sphaeroides. J Biol Chem 270:23875–23882PubMedCrossRefGoogle Scholar
  42. Fraser NJ, Hashimoto H, Cogdell RJ (2001) Carotenoids and bacterial photosynthesis: the story so far… Photosynth Res 70:249–256Google Scholar
  43. Frey M (2002) Hydrogenases: hydrogen-activating enzymes. Chembiochem 3:153–160PubMedCrossRefGoogle Scholar
  44. Frigaard NU (2016) Biotechnology of anoxygenic phototrophic bacteria. Adv Biochem Eng BiotechnolGoogle Scholar
  45. Fujimoto H, Wakabayashi M, Yamashiro H, Maeda I, Isoda K, Kondoh M, Kawase M, Miyasaka H, Yagi K (2006) Whole-cell arsenite biosensor using photosynthetic bacterium Rhodovulum sulfidophilumRhodovulum sulfidophilum as an arsenite biosensor. Appl Microbiol Biotechnol 73:332–338PubMedCrossRefGoogle Scholar
  46. Garcia-Asua G, Cogdell RJ, Hunter CN (2002) Functional assembly of the foreign carotenoid lycopene into the photosynthetic apparatus of Rhodobacter sphaeroides, achieved by replacement of the native 3-step phytoene desaturase with its 4-step counterpart from Erwinia herbicola. Mol Microbiol 44:233–244PubMedCrossRefGoogle Scholar
  47. Glaeser J, Klug G (2005) Photo-oxidative stress in Rhodobacter sphaeroides: protective role of carotenoids and expression of selected genes. Microbiology 151:1927–1938PubMedCrossRefGoogle Scholar
  48. Graichen ME, Jones LH, Sharma BV, van Spanning RJ, Hosler JP, Davidson VL (1999) Heterologous expression of correctly assembled methylamine dehydrogenase in Rhodobacter sphaeroides. J Bacteriol 181:4216–4222PubMedPubMedCentralGoogle Scholar
  49. Gregor J, Klug G (1999) Regulation of bacterial photosynthesis genes by oxygen and light. FEMS Microbiol Lett 179:1–9PubMedCrossRefGoogle Scholar
  50. Han Y, Perner M (2016) Sulfide consumption in Sulfurimonas denitrificans and heterologous expression of its three sulfide-quinone reductase homologs. J Bacteriol 198:1260–1267PubMedPubMedCentralCrossRefGoogle Scholar
  51. Hattab G, Suisse AYT, Ilioaia O, Casiraghi M, Dezi M, Warnet XL, E. WD, Moncoq, K., Zoonens M, Miroux B (2010) Membrane protein production in Escherichia coli: overview and protocols. In: Mus-Veteau I (ed) Membrane proteins production for structural analysis. Springer Science + Business Media, New York, pp 87–106Google Scholar
  52. Hillen LW, Pollard G, Wake LV, White N (1982) Hydrocracking of the oils of Botryococcus braunii to transport fuels. Biotechnol Bioeng 24:193–205PubMedCrossRefGoogle Scholar
  53. Holden-Dye K, Crouch LI, Jones MR (2008) Structure, function and interactions of the PufX protein. Biochim Biophys Acta 1777:613–630PubMedCrossRefGoogle Scholar
  54. Hu Z, Zhao Z, Pan Y, Tu Y, Chen G (2010) A powerful hybrid puc operon promoter tightly regulated by both IPTG and low oxygen level. Biochemistry (Mosc) 75:519–525CrossRefGoogle Scholar
  55. Hümbelin M, Thomas A, Lin J, Li J, Jore J, Berry A (2002) Genetics of isoprenoid biosynthesis in Paracoccus zeaxanthinifaciens. Gene 297:129–139PubMedCrossRefGoogle Scholar
  56. Hunter CN, Hundle BS, Hearst JE, Lang HP, Gardiner AT, Takaichi S, Cogdell RJ (1994) Introduction of new carotenoids into the bacterial photosynthetic apparatus by combining the carotenoid biosynthetic pathways of Erwinia herbicola and Rhodobacter sphaeroides. J Bacteriol 176:3692–3697PubMedPubMedCentralCrossRefGoogle Scholar
  57. Ind AC, Porter SL, Brown MT, Byles ED, de Beyer JA, Godfrey SA, Armitage JP (2009) Inducible-expression plasmid for Rhodobacter sphaeroides and Paracoccus denitrificans. Appl Environ Microbiol 75:6613–6615PubMedPubMedCentralCrossRefGoogle Scholar
  58. Inui M, Nakata K, Roh JH, Vertes AA, Yukawa H (2003) Isolation and molecular characterization of pMG160, a mobilizable cryptic plasmid from Rhodobacter blasticus. Appl Environ Microbiol 69:725–733PubMedPubMedCentralCrossRefGoogle Scholar
  59. Jaschke PR, Saer RG, Noll S, Beatty JT (2011) Modification of the genome of Rhodobacter sphaeroides and construction of synthetic operons. Methods Enzymol 497:519–538PubMedCrossRefGoogle Scholar
  60. Jeya M, Moon H-J, Lee J-L, Kim I-W, Lee J-K (2010) Current state of coenzyme Q10 production and its applications. Appl Microbiol Biotechnol 85:1653–1663PubMedCrossRefGoogle Scholar
  61. Jin H, Nikolau BJ (2014) Evaluating PHA productivity of bioengineered Rhodosprillum rubrum. PLoS One 9, e96621PubMedPubMedCentralCrossRefGoogle Scholar
  62. Jones MR, Visschers RW, van Grondelle R, Hunter CN (1992) Construction and characterization of a mutant of Rhodobacter sphaeroides with the reaction center as the sole pigment-protein complex. Biochemistry 31:4458–4465PubMedCrossRefGoogle Scholar
  63. Kappler U, McEwan AG (2002) A system for the heterologous expression of complex redox proteins in Rhodobacter capsulatus: characterisation of recombinant sulphite:cytochrome c oxidoreductase from Starkeya novella. FEBS Letters 529:208–214PubMedCrossRefGoogle Scholar
  64. Katona G, Andreasson U, Landau EM, Andreasson LE, Neutze R (2003) Lipidic cubic phase crystal structure of the photosynthetic reaction centre from Rhodobacter sphaeroides at 2.35 Å resolution. J Mol Biol 331:681–692PubMedCrossRefGoogle Scholar
  65. Katsiou E, Sturgis JN, Robert B, Tadros MH (1998) Heterologous expression of genes encoding bacterial light-harvesting complex II in Rhodobacter capsulatus and Rhodovulum sulfidophilum. Microbiol Res 153:189–204PubMedCrossRefGoogle Scholar
  66. Katzke N, Arvani S, Bergmann R, Circolone F, Markert A, Svensson V, Jaeger K-E, Heck A, Drepper T (2010) A novel T7 RNA polymerase dependent expression system for high-level protein production in the phototrophic bacterium Rhodobacter capsulatus. Protein Expr Purif 69:137–146PubMedCrossRefGoogle Scholar
  67. Katzke N, Bergmann R, Jaeger K-E, Drepper T (2012) Heterologous high-level gene expression in the photosynthetic bacterium Rhodobacter capsulatus. Methods Mol Biol 824:251–269PubMedCrossRefGoogle Scholar
  68. Katzke N, Knapp A, Loeschcke A, Drepper T, Jaeger K-E (2016) Novel tools for the functional expression of metagenomic DNA. Meth Mol BiolGoogle Scholar
  69. Kawata T, Bristol JR, Rossignol DP, Rose JR, Kobayashi S, Yokohama H, Ishibashi A, Christ WJ, Katayama K, Yamatsu I, Kishi Y (1999) E5531, a synthetic non-toxic lipid A derivative blocks the immunobiological activities of lipopolysaccharide. Br J Pharmacol 127:853–862PubMedPubMedCentralCrossRefGoogle Scholar
  70. Keasling JD (2012) Synthetic biology and the development of tools for metabolic engineering. Metab Eng 14:189–195PubMedCrossRefGoogle Scholar
  71. Keen NT, Tamaki S, Kobayashi D, Trollinger D (1988) Improved broad-host-range plasmids for DNA cloning in Gram-negative bacteria. Gene 70:191–197PubMedCrossRefGoogle Scholar
  72. Kersters K, de Vos P, Gillis M, Swings J, Vandamme P, Stackebrandt E (2006) Introduction to the proteobacteria. Prokaryotes 5:3–37CrossRefGoogle Scholar
  73. Keskin T, Abo-Hashesh M, Hallenbeck PC (2011) Photofermentative hydrogen production from wastes. Bioresour Technol 102:8557–8568PubMedCrossRefGoogle Scholar
  74. Khan NE, Myers JA, Tuerk AL, Curtis WR (2014) A process economic assessment of hydrocarbon biofuels production using chemoautotrophic organisms. Bioresour Technol 172:201–211PubMedCrossRefGoogle Scholar
  75. Khan NE, Nybo SE, Chappell J, Curtis WR (2015) Triterpene hydrocarbon production engineered into a metabolically versatile host—Rhodobacter capsulatus. Biotechnol Bioeng 112:1523–1532PubMedCrossRefGoogle Scholar
  76. Kiley PJ, Varga A, Kaplan S (1988) Physiological and structural analysis of light-harvesting mutants of Rhodobacter sphaeroides. J Bacteriol 170:1103–1115PubMedPubMedCentralCrossRefGoogle Scholar
  77. Kim D-H, Kim M-S (2011) Hydrogenases for biological hydrogen production. Bioresour Technol 102:8423–8431PubMedCrossRefGoogle Scholar
  78. Kobayashi J, Yoshimune K, Komoriya T, Kohno H (2011) Efficient hydrogen production from acetate through isolated Rhodobacter sphaeroides. J Biosci Bioeng 112:602–605PubMedCrossRefGoogle Scholar
  79. Koepke J, Krammer E-M, Klingen AR, Sebban P, Ullmann GM, Fritzsch G (2007) pH modulates the quinone position in the photosynthetic reaction center from Rhodobacter sphaeroides in the neutral and charge separated states. J Mol Biol 371:396–409PubMedCrossRefGoogle Scholar
  80. Kong LY, Tan RX (2015) Artemisinin, a miracle of traditional Chinese medicine. Nat Prod Rep 32:1617–1621PubMedCrossRefGoogle Scholar
  81. Kovach ME, Phillips RW, Elzer PH, Roop RM II, Peterson KM (1994) pBBR1MCS: a broad-host-range cloning vector. Biotechniques 16:800–802PubMedGoogle Scholar
  82. Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM II, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176PubMedCrossRefGoogle Scholar
  83. Labes M, Pühler A, Simon R (1990) A new family of RSF1010-derived expression and lac-fusion broad-host-range vectors for Gram-negative bacteria. Gene 89:37–46PubMedCrossRefGoogle Scholar
  84. Laible PD, Scott HN, Henry L, Hanson DK (2004) Towards higher-throughput membrane protein production for structural genomics initiatives. J Struct Funct Genomics 5:167–172PubMedCrossRefGoogle Scholar
  85. Laible PD, Mielke DL, Hanson DK (2009) Foreign gene expression in photosynthetic bacteria. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) The purple phototrophic bacteria. Springer Science + Business Media B.V., Dordrecht, pp 839–860CrossRefGoogle Scholar
  86. Laible PD, Mielke DL, Hanson DK (2011) Membrane protein production using photosynthetic bacteria: a practical guide. In: Robinson AS (ed) Production of Membrane Proteins: Strategies for Expression and Isolation, 1st edn. Wiley-VCH Verlags GmbH & Co, KGaA, pp 167–198CrossRefGoogle Scholar
  87. Lee PC, Schmidt-Dannert C (2002) Metabolic engineering towards biotechnological production of carotenoids in microorganisms. Appl Microbiol Biotechnol 60:1–11PubMedCrossRefGoogle Scholar
  88. Lee JK, DeHoff BS, Donohue TJ, Gumport RI, Kaplan S (1989) Transcriptional analysis of puf operon expression in Rhodobacter sphaeroides 2.4.1 and an intercistronic transcription terminator mutant. J Biol Chem 264:19354–19365PubMedGoogle Scholar
  89. Leimkühler S, Kern M, Solomon PS, McEwan AG, Schwarz G, Mendel RR, Klipp W (1998) Xanthine dehydrogenase from the phototrophic purple bacterium Rhodobacter capsulatus is more similar to its eukaryotic counterparts than to prokaryotic molybdenum enzymes. Mol Microbiol 27:853–869PubMedCrossRefGoogle Scholar
  90. Liebl W, Angelov A, Juergensen J, Chow J, Loeschcke A, Drepper T, Classen T, Pietruzska J, Ehrenreich A, Streit WR, Jaeger K-E (2014) Alternative hosts for functional (meta)genome analysis. Appl Microbiol Biotechnol 98:8099–8109PubMedCrossRefGoogle Scholar
  91. Lindenstrauß U, Brüser T (2006) Conservation and variation between Rhodobacter capsulatus and Escherichia coli Tat systems. J Bacteriol 188:7807–7814PubMedPubMedCentralCrossRefGoogle Scholar
  92. Loeschcke A, Markert A, Wilhelm S, Wirtz A, Rosenau F, Jaeger K-E, Drepper T (2013) TREX: a universal tool for the transfer and expression of biosynthetic pathways in bacteria. ACS Synth Biol 2:22–33PubMedCrossRefGoogle Scholar
  93. Lombard J, Moreira D (2011) Origins and early evolution of the mevalonate pathway of isoprenoid biosynthesis in the three domains of life. Mol Biol Evol 28:87–99PubMedCrossRefGoogle Scholar
  94. Lu W, Shi Y, He S, Fei Y, Yu K, Yu H (2013) Enhanced production of CoQ10 by constitutive overexpression of 3-demethyl ubiquinone-9 3-methyltransferase under tac promoter in Rhodobacter sphaeroides. Biochem Eng J 72:42–47CrossRefGoogle Scholar
  95. Lu W, Ye L, Xu H, Xie W, Gu J, Yu H (2014) Enhanced production of coenzyme Q10 by self-regulating the engineered MEP pathway in Rhodobacter sphaeroides. Biotechnol Bioeng 111:761–769PubMedCrossRefGoogle Scholar
  96. Lu W, Ye L, Lv X, Xie W, Gu J, Chen Z, Zhu Y, Li A, Yu H (2015) Identification and elimination of metabolic bottlenecks in the quinone modification pathway for enhanced coenzyme Q10 production in Rhodobacter sphaeroides. Metab Eng 29:208–216PubMedCrossRefGoogle Scholar
  97. Lundstrom K (2007) Structural genomics and drug discovery. J Cell Mol Med 11:224–238PubMedPubMedCentralCrossRefGoogle Scholar
  98. Madigan MT (1995) Microbiology of nitrogen fixation by anoxygenic photosynthetic bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Springer Netherlands, Dordrecht, pp 915–928Google Scholar
  99. Madigan MT, Jung D (2009) An overview of purple bacteria: systematics, physiology, and habitats. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) The purple phototrophic bacteria. Springer Science + Business Media B.V., pp 1–15Google Scholar
  100. Maeda I, Yamashiro H, Yoshioka D, Onodera M, Ueda S, Kawase M, Miyasaka H, Yagi K (2006) Colorimetric dimethyl sulfide sensor using Rhodovulum sulfidophilum cells based on intrinsic pigment conversion by CrtA. Appl Microbiol Biotechnol 70:397–402PubMedCrossRefGoogle Scholar
  101. Marienhagen J, Bott M (2013) Metabolic engineering of microorganisms for the synthesis of plant natural products. J Biotechnol 163:166–178PubMedCrossRefGoogle Scholar
  102. Masepohl B, Hallenbeck PC (2010) Nitrogen and molybdenum control of nitrogen fixation in the phototrophic bacterium Rhodobacter capsulatus. Adv Exp Med Biol 675:49–70PubMedCrossRefGoogle Scholar
  103. Masepohl B, Drepper T, Paschen A, Gross S, Pawlowski A, Raabe K, Riedel K-U, Klipp W (2002) Regulation of nitrogen fixation in the phototrophic purple bacterium Rhodobacter capsulatus. J Mol Microbiol Biotechnol 4:243–248PubMedGoogle Scholar
  104. McLuskey K, Roszak AW, Zhu Y, Isaacs NW (2010) Crystal structures of all-alpha type membrane proteins. Eur Biophys J 39:723–755PubMedCrossRefGoogle Scholar
  105. Miroux B, Walker JE (1996) Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260:289–298PubMedCrossRefGoogle Scholar
  106. Mukoyama D, Takeyama H, Kondo Y, Matsunaga T (2006) Astaxanthin formation in the marine photosynthetic bacterium Rhodovulum sulfidophilum expressing crtI, crtY, crtW and crtZ. FEMS Microbiol Lett 265:69–75PubMedCrossRefGoogle Scholar
  107. Müller M, Klösgen RB (2005) The Tat pathway in bacteria and chloroplasts. Mol Membr Biol 22:113–121PubMedCrossRefGoogle Scholar
  108. Mus-Veteau I, Demange P, Zito F (2014) Membrane protein production for structural analysis. In: Mus-Veteau I (ed) Membrane proteins production for structural analysis. Springer Science + Business Media, New York, pp 1–44Google Scholar
  109. Naziri E, Tsimidou MZ (2013) Formulated squalene for food related applications. Recent Pat Food Nutr Agric 5:83–104PubMedCrossRefGoogle Scholar
  110. Nie X, Zhang L, Hu Z, Liu Y, Zhao Z (2015) Human neutrophil peptide 3 could be functionally expressed in Rhodobacter sphaeroides. Acta Biochim Pol 62:259–263PubMedCrossRefGoogle Scholar
  111. Niederman RA (2016) Development and dynamics of the photosynthetic apparatus in purple phototrophic bacteria. Biochim Biophys Acta 1857:232–246PubMedCrossRefGoogle Scholar
  112. Niehaus TD, Okada S, Devarenne TP, Watt DS, Sviripa V, Chappell J (2011) Identification of unique mechanisms for triterpene biosynthesis in Botryococcus braunii. Proc Natl Acad Sci U S A 108:12260–12265PubMedPubMedCentralCrossRefGoogle Scholar
  113. Nybo SE, Khan NE, Woolston BM, Curtis WR (2015) Metabolic engineering in chemolithoautotrophic hosts for the production of fuels and chemicals. Metab Eng 30:105–120PubMedCrossRefGoogle Scholar
  114. Olsen JD, Adams PG, Jackson PJ, Dickman MJ, Qian P, Hunter CN (2014) Aberrant assembly complexes of the reaction center light-harvesting 1 PufX (RC-LH1-PufX) core complex of Rhodobacter sphaeroides imaged by atomic force microscopy. J Biol Chem 289:29927–29936PubMedPubMedCentralCrossRefGoogle Scholar
  115. Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5:993–996PubMedCrossRefGoogle Scholar
  116. Prentki P, Krisch HM (1984) In vitro insertional mutagenesis with a selectable DNA fragment. Gene 29:303–313PubMedCrossRefGoogle Scholar
  117. Pugh RJ, McGlynn P, Jones MR, Hunter CN (1998) The LH1-RC core complex of Rhodobacter sphaeroides: interaction between components, time-dependent assembly, and topology of the PufX protein. Biochim Biophys Acta 1366:301–316PubMedCrossRefGoogle Scholar
  118. Qin L, Hiser C, Mulichak A, Garavito RM, Ferguson-Miller S (2006) Identification of conserved lipid/detergent-binding sites in a high-resolution structure of the membrane protein cytochrome c oxidase. Proc Natl Acad Sci U S A 103:16117–16122PubMedPubMedCentralCrossRefGoogle Scholar
  119. Romagnoli S, Tabita FR (2009) Carbon dioxide metabolism and its regulation in nonsulfur purple photosynthetic bacteria. In: Daldal F, Thurnauer MC, Beatty JT (eds) Hunter CN. The Purple Phototrophic Bacteria, Springer Science + Business Media B.V., pp 563–576Google Scholar
  120. Roy A, Shukla AK, Haase W, Michel H (2008) Employing Rhodobacter sphaeroides to functionally express and purify human G protein-coupled receptors. Biol Chem 389:69–78PubMedCrossRefGoogle Scholar
  121. Saer RG, Pan J, Hardjasa A, Lin S, Rosell F, Mauk AG, Woodbury NW, Murphy ME, Beatty JT (2014) Structural and kinetic properties of Rhodobacter sphaeroides photosynthetic reaction centers containing exclusively Zn-coordinated bacteriochlorophyll as bacteriochlorin cofactors. Biochim Biophys Acta 1837:366–374PubMedCrossRefGoogle Scholar
  122. Sahdev S, Khattar SK, Saini KS (2008) Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. Mol Cell Biochem 307:249–264PubMedCrossRefGoogle Scholar
  123. Sandmann G (2015) Carotenoids of biotechnological importance. Adv Biochem Eng Biotechnol 148:449–467PubMedGoogle Scholar
  124. Sawai S, Saito K (2011) Triterpenoid biosynthesis and engineering in plants. Front Plant Sci 2:25PubMedPubMedCentralCrossRefGoogle Scholar
  125. Schrader J, Bohlmann J (2015) Biotechnology of isoprenoids. Advances in biochemical engineering/biotechnology, vol 148. Springer International PublishingGoogle Scholar
  126. Shaw AL, Hanson GR, McEwan AG (1996) Cloning and sequence analysis of the dimethylsulfoxide reductase structural gene from Rhodobacter capsulatus. Biochim Biophys Acta 1276:176–180PubMedCrossRefGoogle Scholar
  127. Simon R, Priefer U, Pühler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Nat Biotechnol 1:784–791CrossRefGoogle Scholar
  128. Solomon PS, Lane I, Hanson GR, McEwan AG (1997) Characterisation of the pterin molybdenum cofactor in dimethylsulfoxide reductase of Rhodobacter capsulatus. Eur J Biochem 246:200–203PubMedCrossRefGoogle Scholar
  129. Staskawicz B, Dahlbeck D, Keen N, Napoli C (1987) Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea. J Bacteriol 169:5789–5794PubMedPubMedCentralCrossRefGoogle Scholar
  130. Stowell MH, McPhillips TM, Rees DC, Soltis SM, Abresch E, Feher G (1997) Light-induced structural changes in photosynthetic reaction center: implications for mechanism of electron-proton transfer. Science 276:812–816PubMedCrossRefGoogle Scholar
  131. Strittmatter W, Weckesser J, Salimath PV, Galanos C (1983) Nontoxic lipopolysaccharide from Rhodopseudomonas sphaeroides ATCC 17023. J Bacteriol 155:153–158PubMedPubMedCentralGoogle Scholar
  132. Svensson-Ek M, Abramson J, Larsson G, Törnroth S, Brzezinski P, Iwata S (2002) The X-ray crystal structures of wild-type and EQ(I-286) mutant cytochrome c oxidases from Rhodobacter sphaeroides. J Mol Biol 321:329–339PubMedCrossRefGoogle Scholar
  133. Sznee K, Crouch LI, Jones MR, Dekker JP, Frese RN (2014) Variation in supramolecular organisation of the photosynthetic membrane of Rhodobacter sphaeroides induced by alteration of PufX. Photosynth Res 119:243–256PubMedCrossRefGoogle Scholar
  134. Tagliabue A, Rappuoli R (2008) Vaccine adjuvants: the dream becomes real. Hum Vaccin 4:347–349PubMedCrossRefGoogle Scholar
  135. Tehrani A, Beatty JT (2004) Effects of precise deletions in Rhodobacter sphaeroides reaction center genes on steady-state levels of reaction center proteins: a revised model for reaction center assembly. Photosynth Res 79:101–108PubMedCrossRefGoogle Scholar
  136. Thimmappa R, Geisler K, Louveau T, O’Maille P, Osbourn A (2014) Triterpene biosynthesis in plants. Annu Rev Plant Biol 65:225–257PubMedCrossRefGoogle Scholar
  137. Tholl D (2015) Biosynthesis and biological functions of terpenoids in plants. Adv Biochem Eng Biotechnol 148:63–106PubMedGoogle Scholar
  138. Tikh IB, Held M, Schmidt-Dannert C (2014) BioBrickTM compatible vector system for protein expression in Rhodobacter sphaeroides. Appl Microbiol Biotechnol 98:3111–3119PubMedCrossRefGoogle Scholar
  139. Trchounian A (2015) Mechanisms for hydrogen production by different bacteria during mixed-acid and photo-fermentation and perspectives of hydrogen production biotechnology. Crit Rev Biotechnol 35:103–113PubMedCrossRefGoogle Scholar
  140. van der Palen CJNM, Reijnders WNM, de Vries S, Duine JA, van Spanning RJM (1997) MauE and MauD proteins are essential in methylamine metabolism of Paracoccus denitrificans. Antonie Van Leeuwenhoek 72:219–228PubMedCrossRefGoogle Scholar
  141. Vick JE, Johnson ET, Choudhary S, Bloch SE, Lopez-Gallego F, Srivastava P, Tikh IB, Wawrzyn GT, Schmidt-Dannert C (2011) Optimized compatible set of BioBrickTM vectors for metabolic pathway engineering. Appl Microbiol Biotechnol 92:1275–1286PubMedCrossRefGoogle Scholar
  142. Vignais PM (2009) Regulation of hydrogenase gene expression. In: Daldal F, Thurnauer MC, Beatty JT (eds) Hunter CN. The Purple Phototrophic Bacteria, Springer Science + Business Media B.V., pp 743–757Google Scholar
  143. Vignais PM, Billoud B (2007) Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev 107:4206–4272PubMedCrossRefGoogle Scholar
  144. Vignais PM, Dimon B, Zorin NA, Tomiyama M, Colbeau A (2000) Characterization of the hydrogen-deuterium exchange activities of the energy-transducing HupSL hydrogenase and H2-signaling HupUV hydrogenase in Rhodobacter capsulatus. J Bacteriol 182:5997–6004PubMedPubMedCentralCrossRefGoogle Scholar
  145. Vranová E, Coman D, Gruissem W (2012) Structure and dynamics of the isoprenoid pathway network. Mol Plant 5:318–333PubMedCrossRefGoogle Scholar
  146. Vranová E, Coman D, Gruissem W (2013) Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu Rev Plant Biol 64:665–700PubMedCrossRefGoogle Scholar
  147. Wang W, Hu Z, Chen X, Zhao Z, Li J, Chen G (2009) Heterologous synthesis and assembly of functional LHII antenna complexes from Rhodovulum sulfidophilum in Rhodobacter sphaeroides mutant. Mol Biol Rep 36:1695–1702PubMedCrossRefGoogle Scholar
  148. Wang GS, Grammel H, Abou-Aisha K, Sägesser R, Ghosh R (2012) High-level production of the industrial product lycopene by the photosynthetic bacterium Rhodospirillum rubrum. Appl Environ Microbiol 78:7205–7215PubMedPubMedCentralCrossRefGoogle Scholar
  149. Wang C-C, Liu W-S, Chang F-H, Tsai P-Y, Tsai M-K, Shiang J-C, Wen Z-H (2014) Rhodobacter sphaeroides extract improves glucose homeostasis in streptozotocin-induced diabetic mice. J Microb Biochem Technol 6:38–42CrossRefGoogle Scholar
  150. Wang C-C, Ding S, Chiu K-H, Liu W-S, Lin T-J, Wen Z-H (2016) Extract from a mutant Rhodobacter sphaeroides as an enriched carotenoid source. Food Nutr Res 60:29580Google Scholar
  151. Way JC, Collins JJ, Keasling JD, Silver PA (2014) Integrating biological redesign: where synthetic biology came from and where it needs to go. Cell 157:151–161PubMedCrossRefGoogle Scholar
  152. Weiss MS, Schulz GE (1992) Structure of porin refined at 1.8 Å resolution. J Mol Biol 227:493–509PubMedCrossRefGoogle Scholar
  153. Wenzel SC, Müller R (2005) Recent developments towards the heterologous expression of complex bacterial natural product biosynthetic pathways. Curr Opin Biotechnol 16:594–606PubMedCrossRefGoogle Scholar
  154. Woronowicz K, Harrold JW, Kay JM, Niederman RA (2013) Structural and functional proteomics of intracytoplasmic membrane assembly in Rhodobacter sphaeroides. J Mol Microbiol Biotechnol 23:48–62PubMedCrossRefGoogle Scholar
  155. Wu W-T, Liu W-S (2011) Anti-inflammatory property of biomaterial carotenoids production by Rhodobacter sphaeroides WL-APD911. Adv Mat Res 287–290:2028–2031CrossRefGoogle Scholar
  156. Yang X, Dai G, Li G, Yang ES (2010) Coenzyme Q10 reduces β-amyloid plaque in an APP/PS1 transgenic mouse model of Alzheimer’s disease. J Mol Neurosci 41:110–113PubMedCrossRefGoogle Scholar
  157. Yang T-H, Lai Y-H, Lin T-P, Liu W-S, Kuan L-C, Liu C-C (2014) Chronic exposure to Rhodobacter sphaeroides extract LycogenTM prevents UVA-induced malondialdehyde accumulation and procollagen I down-regulation in human dermal fibroblasts. Int J Mol Sci 15:1686–1699PubMedPubMedCentralCrossRefGoogle Scholar
  158. Yin H (2008) Exogenous agents that target transmembrane domains of proteins. Angew Chem Int Ed 47:2744–2752CrossRefGoogle Scholar
  159. Yoshida K, Yoshioka D, Inoue K, Takaichi S, Maeda I (2007) Evaluation of colors in green mutants isolated from purple bacteria as a host for colorimetric whole-cell biosensors. Appl Microbiol Biotechnol 76:1043–1050PubMedCrossRefGoogle Scholar
  160. Yoshida K, Inoue K, Takahashi Y, Ueda S, Isoda K, Yagi K, Maeda I (2008) Novel carotenoid-based biosensor for simple visual detection of arsenite: characterization and preliminary evaluation for environmental application. Appl Environ Microbiol 74:6730–6738PubMedPubMedCentralCrossRefGoogle Scholar
  161. Youvan DC, Bylina EJ, Alberti M, Begusch H, Hearst JE (1984) Nucleotide and deduced polypeptide sequences of the photosynthetic reaction-center, B870 antenna, and flanking polypeptides from R. capsulata. Cell 37:949–957PubMedCrossRefGoogle Scholar
  162. Zappa S, Li K, Bauer CE (2010) The tetrapyrrole biosynthetic pathway and its regulation in Rhodobacter capsulatus. Adv Exp Med Biol 675:229–250PubMedPubMedCentralCrossRefGoogle Scholar
  163. Zhao Z, Hu Z, Nie X, Cheng L, Ding G, Luo M, Pan Y, Liang Y, Chen G (2011) A novel Rhodobacter sphaeroides expression system for real-time evaluation of heterologous protein expression levels. Protein Pept Lett 18:568–572PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum JülichJülichGermany
  2. 2.Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum JülichJülichGermany

Personalised recommendations