Skip to main content

Diversity of the Cyanobacteria

  • Chapter
  • First Online:
Modern Topics in the Phototrophic Prokaryotes

Abstract

The cyanobacteria are an ancient lineage of photo-oxygenic bacteria. Globally responsible for much of the primary productivity and nitrogen fixation, they are also evolutionarily significant as the photosynthetic members of serial endosymbiotic events leading to the establishment of chloroplasts. Traditionally classified based on morphological characters, recent research revealed an abundance of cryptic diversity evidenced by molecular analyses, most notably the 16S rDNA gene sequence. Explorations of seldom sampled habitats, such as tropics environments, aerophytic habitats, soil crusts, etc., have also revealed a tremendous new diversity of taxa. This increase in the alpha-level diversity, coupled with new molecular techniques, has greatly altered our perceptions of the evolutionary relationships within this clade. Many of the traditional genera have proven to be polyphyletic, but revisions are underway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abed RMM, Dobretsov S, Sudesh K (2008) Application of cyanobacteria in biotechnology. J Appl Microbiol 106:1–12. doi:10.1007/s00253-011-3394-0

    Article  CAS  Google Scholar 

  • Achtman M, Wagner M (2008) Microbial diversity and the genetic nature of microbial species. Nat Rev Microbiol 6:431–440. doi:10.1038/nrmicro1872

    CAS  PubMed  Google Scholar 

  • Acinas SG, Haverkamp THA, Huisman J et al (2009) Phenotypic and genetic diversification of Pseudanabaena spp. (cyanobacteria). ISME J 3:31–46. doi:10.1038/ismej.2008.78

    Article  CAS  PubMed  Google Scholar 

  • Anagnostidis K (2001) Nomenclatural changes in cyanoprokaryotic order Oscillatoriales. Preslia 73:359–375

    Google Scholar 

  • Anagnostidis K, Komárek J (1988) Modern approach to the classification system of cyanophytes, 3-Oscillatoriales. Arch Hydrobiol 80/Algol Stud 50:327–472

    Google Scholar 

  • Azua-Bustos A, Zúñiga J, Arenas-Fajardo C et al (2014) Gloeocapsopsis AAB1, an extremely desiccation-tolerant cyanobacterium isolated from the Atacama Desert. Extremophiles 18:61–74. doi:10.1007/s00792-013-0592-y

    Article  CAS  PubMed  Google Scholar 

  • Bekker A, Holland HD, Wang P-L et al (2004) Dating the rise of atmospheric oxygen. Nature 427:117–120. doi:10.1038/nature02260

    Article  CAS  PubMed  Google Scholar 

  • Berrendero E, Arenas C, Mateo P et al (2016) Cyanobacterial diversity and related sedimentary facies as a function of water flow conditions: example from the monasterio de piedra natural park (Spain). Sediment Geol 337:12–28. doi:10.1016/j.sedgeo.2016.03.003

    Article  CAS  Google Scholar 

  • Biller SJ, Berube PM, Lindell D et al (2015) Prochlorococcus: the structure and function of collective diversity. Nat Rev Microbiol 13:13–27. doi:10.1038/nrmicro3378

    Article  CAS  PubMed  Google Scholar 

  • Blank CE, Sanchez-Baracaldo P (2010) Timing of morphological and ecological innovations in the cyanobacteria – a key to understanding the rise in atmospheric oxygen. Geobiology 8:1–23. doi:10.1111/j.1472-4669.2009.00220.x

    Article  CAS  PubMed  Google Scholar 

  • Bohunická M, Pietrasiak N, Johansen JR et al (2015) Roholtiella, gen. nov. (Nostocales, Cyanobacteria) – a tapering and branching cyanobacteria of the family Nostocaceae. Phytotaxa 197:84–103. doi:10.11646/phytotaxa.197.2.2

    Google Scholar 

  • Boison G, Mergel A, Jolkver H et al (2004) Bacterial life and dinitrogen fixation at a gypsum rock. Appl Environ Microbiol 70:7070–7077. doi:10.1128/AEM.70.12.7070-7077.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boone DR, Castenholz RW, Garrity GM (2001) Bergey’s manual of systematic bacteriology, vol 1, The archaea and the deeply branching and phototrophic bacteria. Springer, New York

    Book  Google Scholar 

  • Bornet E, Flahault C (1886–1888) Révision des Nostocacées heterocystées continues dans les principaux herbiers de France. Ann Sci Nat Bot 3:323–381, 4:343–373, 5:51–129, 7:177–262

    Google Scholar 

  • Boyer SL, Johansen JR, Flechiner VR et al (2002) Phylogeny and genetic variance in terrestrial Microcoleus (Cyanophyceae) species based on sequence analysis of the 16S rRNA gene and associated 16S-23S ITS region. J Phycol 38:1222–1235. doi:10.1046/j.1529-8817.2002.01168.x

  • Büdel B, Darienko T, Deutschewitz K et al (2009) Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microb Ecol 57:229–247. doi:10.1007/s00248-008-9449-9

    Article  PubMed  Google Scholar 

  • Butterfield NJ (2015) Proterozoic photosynthesis – a critical review. Palaeontology 58:95–972. doi:10.1111/pala.12211

    Google Scholar 

  • Callieri C, Coci M, Corno G et al (2013) Phylogenetic diversity of nonmarine picocyanobacteria. FEMS Microbiol Ecol 85:293–301. doi:10.1111/1574-6941.12118

    Article  CAS  PubMed  Google Scholar 

  • Carmichael WW (1992) Cyanobacteria secondary metabolites – the cyanotoxins. J Appl Bacteriol 72:445–459. doi:10.1111/j.1365-2672.1992.tb01858.x

    Article  CAS  PubMed  Google Scholar 

  • Casamatta DA, Vis ML, Sheath RG (2003) Cryptic species in cyanobacterial systematics: a case study of Phormidium retzii (Oscillatoriales) using RAPD molecular markers and 16S rDNA sequence data. Aquat Bot 74:295–309. doi:10.1016/j.aquabot.2003.08.005

    Article  CAS  Google Scholar 

  • Casamatta DA, Johansen JR, Vis ML et al (2005) Molecular and morphological characterization of ten polar and near-polar strains within the oscillatoriales (cyanobacteria). J Phycol 41:421–433. doi:10.1111/j.1529-8817.2005.04062.x

    Article  CAS  Google Scholar 

  • Casamatta DA, Gomez SR, Johansen JR (2006) Rexia erecta gen. et sp. nov. and Capsosira lowei sp. nov., two newly described cyanobacterial taxa from the Great Smoky Mountains National Park (USA). Hydrobiologia 561:13–26. doi:10.1007/s10750-005-1602-6

    Article  Google Scholar 

  • Chatchawan T, Komárek J, Strunecký O et al (2012) Oxynema, a new genus separated from the genus Phormidium (Cyanophyta). Cryptog Algol 33:41–59. doi:10.7872/crya.v33.iss1.2011.041

    Article  Google Scholar 

  • Codd GA, Ward CJ, Bell SG (1997) Cyanobacterial toxins: occurrence, modes of action, health effects and exposure routes. Arch Toxicol Suppl 19:399–410. doi:10.1016/j.chemosphere.2013.07.056

    Article  CAS  PubMed  Google Scholar 

  • Cohan FM (2001) Bacterial species and speciation. Syst Biol 50:513–524. doi:10.1016/j.cub.2015.10.022

    Article  CAS  PubMed  Google Scholar 

  • Cohan FM (2002) What are bacterial species? Annu Rev Microbiol 56:457–487. doi:10.1146/annurev.micro.56.012302.160634

    Article  CAS  PubMed  Google Scholar 

  • Cohan FM, Perry EB (2007) A systematics for discovering the fundamental units of bacterial diversity. Curr Biol 17:R373–R386. doi:10.1016/j.cub.2007.03.032

    Article  CAS  PubMed  Google Scholar 

  • Comte K, Šabacká M, Carré-Mlouka A et al (2007) Relationships between the Arctic and the Antarctic cyanobacteria; three Phormidium-like strains evaluated by a polyphasic approach. FEMS Microbiol Ecol 59:366–376. doi:10.1111/j.1574-6941.2006.00257.x

    Article  CAS  PubMed  Google Scholar 

  • Copeland JJ (1936) Yellowstone thermal Myxophyceae. Ann N Y Acad Sci 36:1–232. doi:10.1111/j.1749-6632.1936.tb56976.x

    Article  Google Scholar 

  • Dadheech PK, Mahmoud H, Kotut K et al (2014) Desertifilum fontinale sp. nov. (Oscillatoriales, Cyanobacteria) from a warm spring in East Africa, based on conventional and molecular studies. Fottea 14:129–140. doi:10.5507/fot.2014.010

    Article  Google Scholar 

  • Desikachary TV (1959) Cyanophyta. ICAR monographs on algae. Indian Council of Agricultural research, New Delhi, p 686

    Google Scholar 

  • Dittmann E, Fewer DP, Neilan BA (2013) Cyanobacterial toxins: biosynthetic routes and evolutionary roots. FEMS Microbiol Rev 37:23–43. doi:10.1111/j.1574-6976.2012.12000.x

    Article  CAS  PubMed  Google Scholar 

  • Donner A (2013) The case of Chroococcidiopsis: new phylogenetic and morphological insights into ecologically important Cyanobacteria. PhD Thesis, Technischen Universität Kaiserslautern, Kaiserslautern, p 147

    Google Scholar 

  • Dvořák P, Hašler P, Poulíčková A (2012) Phylogeography of the Microcoleus vaginatus (cyanobacteria) from three continents – a spatial and temporal characterization. PLoS One 7, e40153. doi:10.1371/journal.pone.0040153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dvořák P, Casamatta DA, Hašler P et al (2014a) Synechococcus: 3 billion years of global dominance. Mol Ecol 23:5538–5551. doi:10.1111/mec.12948

  • Dvořák P, Hindák F, Hašler P et al (2014b) Morphological and molecular studies of Neosynechococcus sphagnicola, gen. et sp. nov. (Cyanobacteria, Synechococcales). Phytotaxa 170:24–34. doi:10.11646/phytotaxa.170.1.3

    Google Scholar 

  • Dvořák P, Casamatta DA, Hašler P et al (2015a) Putative extremely long evolutionary stasis in bacteria might be explained by serial convergence. Proc Natl Acad Sci U S A 112, E2229. doi:10.1073/pnas.1502924112

    Article  CAS  Google Scholar 

  • Dvořák P, Jahodářová E, Hašler P et al (2015b) A new tropical cyanobacterium Pinocchia polymorpha gen. et sp. nov. derived from genus Pseudanabaena. Fottea 15:113–120. doi:10.5507/fot.2015.010

    Article  Google Scholar 

  • Ehling-Schulz M, Scherer S (1999) UV protection in cyanobacteria. Eur J Phycol 34:329–338. doi:10.1080/09670269910001736392

    Article  Google Scholar 

  • Engene N, Coates C, Gerwick WH (2010) 16S rRNA gene heterogeneity in the filamentous marine cyanobacterial genus Lyngbya. J Phycol 46:591–601. doi:10.1111/j.1529-8817.2010.00840.x

    Article  CAS  Google Scholar 

  • Engene N, Rottacker EC, Kaštovský J et al (2012) Moorea producens gen. nov. sp. nov. and Moorea bouillonii comb. nov. tropical marine cyanobacteria rich in bioactive secondary metabolites. Int J Syst Evol Microbiol 62:1171–1178. doi:10.1099/ijs.0.033761-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Engene N, Paul VJ, Byrum T et al (2013) Five chemically rich species of tropical marine cyanobacteria of the genus Okeania gen. nov. (Oscillatoriales, Cyanoprokaryota). J Phycol 49:1096–1106. doi:10.1111/jpy.12115

    Article  Google Scholar 

  • Erwin PM, Thacker W (2008) Cryptic diversity of the symbiotic cyanobacterium Synechococcus spongiarum among sponge hosts. Mol Ecol 17:2937–2947. doi:10.1111/j.1365-294X.2008.03808.x

    Article  CAS  PubMed  Google Scholar 

  • Ferris MJ, Ward DM (1997) Seasonal distributions of dominant 16S rRNA-defined populations in a hot spring microbial mat examined by denaturing gradient gel electrophoresis. Appl Environ Microbiol 63:1375–1381

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fewer D, Friedl T, Büdel B (2002) Chroococcidiopsis and heterocyst-differentiating cyanobacteria are each other’s closest living relatives. Mol Phylogenet Evol 23:82–90. doi:10.1006/mpev.2001.1075

    Article  CAS  PubMed  Google Scholar 

  • Finlay BJ (2002) Global dispersal of free-living microbial eukaryote species. Science 296:1061–1063. doi:10.1126/science.1070710

    Article  CAS  PubMed  Google Scholar 

  • Fiore MF, Sant’Anna CL, Azevedo MTP (2007) The cyanobacterial genus Brasilonema, gen. nov., a molecular and phenotype evaluation. J Phycol 43:789–798. doi:10.1111/j.1529-8817.2007.00376.x

  • Flombaum P, Gallegos JL, Gordillo RA et al (2013) Present and future global distributions of the marine cyanobacteria Prochlorococcus and Synechococcus. Proc Natl Acad Sci U S A 110:9824–9829. doi:10.1073/pnas.1307701110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser C, Hanage WP, Spratt BG (2007) Recombination and the nature of bacterial speciation. Science 315:476–480. doi:10.1126/science.1127573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Z-M, Wang Y, Tian R-M et al (2014) Symbiotic adaptation drives genome streamlining of the cyanobacterial sponge symbiont “Candidatus Synechococcus spongiarum.” mBio 5:e00079-14. doi:10.1128/mBio.00079-14

  • Garcıa-Fernandez JM, de Marsac NT, Diez J (2004) Streamlined regulation and gene loss as adaptive mechanisms in Prochlorococcus for optimized nitrogen utilization in oligotrophic environments. Microbiol Mol Biol Rev 68:630–638. doi:10.1128/MMBR.68.4.630-638.2004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garcia-Pichel F, Lopez-Cortez A, Nubel U (2001) Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado Plateau. Appl Environ Microbiol 67:1902–1910. doi:10.1128/AEM.67.4.1902-1910.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner NL (1927) New Myxophyceae from Porto Rico. Mem N Y Bot Gard 7:1–144

    Google Scholar 

  • Geitler L (1932) Cyanophyceae. In: Rabenhorst L (ed) Kryptogamen von Deutschland, Österreich und der Schweiz, vol 14. Akademische Verlagsgesellschaft, Leipzig, pp 673–1196

    Google Scholar 

  • Genuário DB, Vaz MGMV, Hentschke GS et al (2015) Halotia gen. nov., a phylogenetically and physiologically coherent cyanobacterial genus isolated from marine coastal environments. Int J Syst Evol Microbiol 65:663–675. doi:10.1099/ijs.0.070078-0

    Article  PubMed  CAS  Google Scholar 

  • Goh F, Allen MA, Leuko S et al (2009) Determining the specific microbial populations and their spatial distribution within the stromatolite ecosystem of Shark Bay. ISME J 3:383–396. doi:10.1038/ismej.2008.114

    Article  CAS  PubMed  Google Scholar 

  • Golubic S, Hernandez-Marine M, Hoffman L (1996) Developmental aspects of branching in filamentous cyanophyta/cyanobacteria. Algol Stud 83:303–329

    Google Scholar 

  • Gomont M (1892 ‘1893’) Monographie des Oscillariées (Nostocacées Homocystées). Deuxième partie. Lyngbyées. Botanique et biologie végétale, Série 7 16:91–264, p 1–7

    Google Scholar 

  • Gugger MF, Hoffman L (2004) Polyphyly of true branching cyanobacteria (Stigonematales). Int J Syst Evol Microbiol 54:349–357. doi:10.1099/ijs.0.02744-0

    Article  CAS  PubMed  Google Scholar 

  • Guiry MD (2012) How many species of algae are there? J Phycol 48:1057–1063. doi:10.1111/j.1529-8817.2012.01222.x

    Article  PubMed  Google Scholar 

  • Guiry MD, Guiry GM (2015) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org; searched on 02 September 2015

  • Hansgirg A (1890) Über neue Süsswasser- und Meeres-Algen und Bacterien, mit Bemerkungen zur Systematik dieser Phycophyten und über den Einfluss des Lichtes auf die Ortsbewegungen des Bacillus pfefferi nob. Sitzungsberichte der Königlichen Böhmischen Gesellschaft der Wissenschaften, Mathematisch-naturwissenschaftliche Classe 1890:3–34

    Google Scholar 

  • Hansgirg A (1892) Prodromus der Algenflora von Böhmen. Zweiter Theil welcher die blaugrünen Algae (Myxophyceen, Cyanophyceen), nebst Nachträgen zum ersten Theile und einer systmatischen Bearbeitung der in Böhmen verbreiten saprophytischen Bacterien und Euglenen enhält. Mit den opiz-preise Gekrönte Arbeit auf Kosten des Opizfondes. Archiv für die naturwissenschaftliche Landesdurchforschung von Böhmen 8:1–268

    Google Scholar 

  • Hašler P, Poulíčková A (2005) Cyanobacteria of the West Carpathian spring fens: single sampling. Czech Phycol 5:43–55

    Google Scholar 

  • Hašler P, Poulíčková A (2010) Diversity, taxonomy and autecology of autochtonous epipelic cyanobacteria of the genera Komvophoron and Isocystis (Borziaceae, Oscillatoriales). Biologia 65:7–16. doi:10.2478/s11756-009-0214-4

    Article  Google Scholar 

  • Hašler P, Dvořák P, Johansen JR et al (2012) Morphological and molecular study of epipelic filamenous genera Phormidium, Microcoleus and Geitlerinema (Oscillatoriales, Cyanophyta/Cyanobacteria). Fottea 12:341–356. doi:10.5507/fot.2012.024

    Article  Google Scholar 

  • Hašler P, Dvořák P, Poulíčková A et al (2014a) A novel genus Ammasolinea gen. nov. (cyanobacteria) isolated from sub–tropical epipelic habitats. Fottea 14:241–248. doi:10.5507/fot.2014.018

    Article  Google Scholar 

  • Hašler P, Dvořák P, Poulíčková A (2014b) A new genus of filamentous epipelic cyanobacterium, Johansenia. Preslia 86:1–15

    Google Scholar 

  • Hauer T, Bohunická M, Johansen JR et al (2014) Reassessment of the cyanobacterial family Microchaetaceae and establishment of the new families Tolypothrichaceae and Godleyaceae. J Phycol 50:1089–1100. doi:10.1111/jpy.12241

    Article  CAS  PubMed  Google Scholar 

  • Hauer T, Mühlsteinová R, Bohunická M et al (2015) Diversity of cyanobacteria on rock surfaces. Biodivers Conserv 24:759–779. doi:10.1007/s10531-015-0890-z

    Article  Google Scholar 

  • Hentschke GS, Johansen JR, Pietrasiak N et al (2016) Phylogenetic placement of Dapisostemon gen. nov. and Streptostemon, two tropical heterocytous genera (Cyanobacteria). Phytotaxa 245:129–143. doi:10.11646/phytotaxa.245.2.4

    Google Scholar 

  • Hoffmann L (1994) Marine cyanophyceae of Papua New Guinea. VI. The genus Lyngbya S.L. Belg J Bot 127:79–86

    Google Scholar 

  • Hoiczyk E, Hansel A (2000) Cyanobacterial cell walls: news from an unusual prokaryotic envelope. J Bacteriol 182:1191–1199. doi:10.1128/JB.182.5.1191-1199.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honda D, Yokota A, Sugiyama J (1999) Detection of seven major evolutionary lineages in cyanobacteria based on the 16S rRNA gene sequence analysis with new sequences of five marine Synechococcus strains. J Mol Evol 48:723–739. doi:10.1007/PL00006517

    Article  CAS  PubMed  Google Scholar 

  • Ishida T, Watanabe MM, Sugiyama J et al (2001) Evidence for polyphyletic origin of the members of the orders of Oscillatoriales and Pleurocapsales se determined by 16S rDNA analysis. FEMS Microbiol Lett 201:79–82. doi:10.1111/j.1574-6968.2001

    Article  CAS  PubMed  Google Scholar 

  • Johansen JR, Casamatta DA (2005) Recognizing cyanobacterial diversity through adoption of a new species paradigm. Algol Stud 117:71–93

    Article  Google Scholar 

  • Jungblut AD, Lovejoy C, Vincent WF (2010) Global distribution of cyanobacterial ecotypes in the cold biosphere. ISME J 4:191–202. doi:10.1038/ismej.2009.113

    Article  CAS  PubMed  Google Scholar 

  • Kämpfer P, Glaeser SP (2012) Prokaryotic taxonomy in the sequencing era—the polyphasic approach revisited. Environ Microbiol 14:291–317. doi:10.1111/j.1462-2920.2011.02615.x

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Tanaka A, Sato S et al (1995) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. I. Sequence features in the 1 Mb region from map position 64% to 92% of the genome. DNA Res 2(153–166):191–198. doi:10.1093/dnares/2.4.153

    Article  CAS  Google Scholar 

  • Kaplan-Levy RN, Hadas O, Summers ML et al (2010) Akinetes - dormant cells of cyanobacteria. In: Lubzens E, Cerda J, Clark MS (eds) Topics in current genetics. Springer, Berlin/Heidelberg

    Google Scholar 

  • Kaštovský J, Johansen JR (2008) Mastigocladus laminosus (Stigonematales, Cyanobacteria): phylogenetic relationship to the soil-inhabiting genera of the order, and taxonomic implications for the genus. Phycologia 47:307–320. doi:10.2216/PH07-69.1

    Article  Google Scholar 

  • Katoh H, Itoh S, Shen J-R (2001) Functional analysis of psbV and a novel c-type cytochrome gene psbV2 of the thermophilic cyanobacterium Thermosynechococcus elongatus strain BP-1. Plant Cell Physiol 42:599–607. doi:10.1093/pcp/pce074

    Article  CAS  PubMed  Google Scholar 

  • Khan Z, Bhadouria P, Bisen PS (2005) Nutritional and therapeutic potential of Spirulina. Curr Pharm Biotechnol 6:373–379. doi:10.3923/ijp.2016.36.51

    Article  CAS  PubMed  Google Scholar 

  • Komárek J (2003) Coccoid and colonial cyanobacteria. In: Wehr JD, Sheath RG (eds) Freshwater algae of North America. Academic, San Diego, pp 59–116

    Chapter  Google Scholar 

  • Komárek J (2010) Recent changes (2008) in cyanobacteria taxonomy based on a combination of molecular background with phenotype and ecological consequences (genus and species concept). Hydrobiologia 1:245–259. doi:10.1007/s10750-009-0031-3

    Article  Google Scholar 

  • Komárek J (2013) Cyanoprokaryota. 3. Heterocytous genera. In: Büdel B, Gärtner G, Krienitz L, Schagerl M (eds) Süswasserflora von Mitteleuropa/Freshwater flora of Central Europe. Springer Spektrum, Berlin/Heidelberg/Germany, pp 1–1130

    Google Scholar 

  • Komárek J (2014) Phenotypic and ecological diversity of freshwater coccoid cyanobacteria from maritime Antarctica and Islands of NW Weddell Sea. II. Czech Polar Rep 4:17–39. doi:10.5817/CPR2013-2-14

    Article  Google Scholar 

  • Komárek J (2015) About endemism of cyanobacteria in freshwater habitats of maritime Antarctica. Algol Stud 148:15–32. doi:10.1127/algol_stud/2015/0219

    Article  Google Scholar 

  • Komárek J, Anagnostidis K (1998) Cyanoprokaryota 1. Teil: Chroococcales. In: Ettl H, Gärtner G, Heynig H et al (eds) Süsswasserflora von Mitteleuropa 19/1. Gustav Fischer, Jena-Stuttgart-Lübeck-Ulm, Germany, pp 1–548

    Google Scholar 

  • Komárek J, Anagnostidis K (2005) Cyanoprokaryota 2. Teil Oscillatoriales. In: Büdel B, Gärtner G, Krienitz et al (eds) Süßwasserflora von Mitteleuropa, vol 19/2. Elsevier, München, pp 1–759

    Google Scholar 

  • Komárek J, Johansen JR (2015) Filamentous cyanobacteria. In: Wehr JD, Sheath RG, Kociolek JP (eds) Freshwater algae of North America: ecology and classification. Elsevier, London, pp 135–235

    Chapter  Google Scholar 

  • Komárek J, Komárková J (2002) Review of the European Microcystis morphospecies (Cyanoprokaryotes) from nature. Czech Phycol 2:1–24

    Google Scholar 

  • Komárek J, Komárková J (2004) Taxonomic review of the cyanoprokaryotic genera Planktothrix and Planktothricoides. Czech Phycol 4:1–18

    Google Scholar 

  • Komárek J, Kaštovský J, Jezberová J (2011) Phylogenetic and taxonomic delimitation of the cyanobacterial genera Aphanothece Nägeli and Anathece (Komárek et Anagnostidis) comb. nova. Eur J Phycol 46:315–326. doi:10.1080/09670262.2011.606373

    Article  Google Scholar 

  • Komárek J, Zapomělová E, Šmarda J et al (2013) Polyphasic evaluation of Limnoraphis robusta, a water–bloom forming cyanobacterium from Lake Arirlán, Guatemala, with a descrition of Limnoraphis gen. nov. Fottea 13:39–52. doi:10.5507/fot.2013.004

    Article  Google Scholar 

  • Komárek J, Kaštovský J, Mareš J et al (2014) Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014 using a polyphasic approach. Preslia 86:295–335

    Google Scholar 

  • Komárková J, Jezberová J, Komárek O et al (2010) Variability of Chroococcus (Cyanobacteria) morphospecies with regard to phylogenetic relationships. Hydrobiologia 639:69–83. doi:10.1007/s10750-009-0015-3

    Article  CAS  Google Scholar 

  • Korelusová J, Kaštovský J, Komárek J (2009) Heterogeneity of the cyanobacterial genus Synechocystis and description of a new genus Geminocystis. J Phycol 45:928–937. doi:10.1111/j.1529-8817.2009.00701.x

    Article  PubMed  CAS  Google Scholar 

  • Kováčik L, Jezberová J, Komárková J et al (2011) Ecological characteristics and polyphasic taxonomic classification of stable pigment-types of the genus Chroococcus (Cyanobacteria). Preslia 83:145–166

    Google Scholar 

  • Kuffner IB, Paul VJ (2004) Effects of the benthic cyanobacterium Lyngbya majuscula on larval recruitment of the reef corals Acropora surculosa and Pocillopora diamicornis. Coral Reefs 24:455–458. doi:10.1007/s00338-004-0416-8

    Article  Google Scholar 

  • Kumar K, Mella-Herrera RA, Golden JW (2010) Cyanobacterial heterocysts. Cold Spring Harb Perspect Biol 2:a000315. doi:10.1101/cshperspect.a000315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lamprinou V, Hernández-Mariné M, Canals T et al (2011) Morphology and molecular evaluation of Iphinoe spelaeobios gen. nov., sp. nov. and Loriellopsis cavernicola gen. nov., sp. nov., two stigonematalean cyanobacteria from Greek and Spanish caves. Int J Syst Evol Microbiol 61:2907–2915. doi:10.1099/ijs.0.029223-0

    Article  CAS  PubMed  Google Scholar 

  • Lamprinou V, Skaraki K, Kotoulas G et al (2012) Toxopsis calypsus gen. nov., sp. nov. (Cyanobacteria, Nostocales) from cave ‘Francthi’, Peloponnese, Greece: a morphological and molecular evaluation. Int J Syst Evol Microbiol 62:2870–2877. doi:10.1099/ijs.0.038679-0

    Article  CAS  PubMed  Google Scholar 

  • Larsson J, Nylander JA, Bergman B (2011) Genome fluctuations in cyanobacteria reflect evolutionary, developmental and adaptive traits. BMC Evol Biol 11:187. doi:10.1186/1471-2148-11-187

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Z, Brand J (2007) Leptolyngbya nodulosa sp. nov. (Oscillatoriaceae), a subtropical marine cyanobacterium that produces a unique multicellular structure. Phycologia 46:396–401. doi:10.2216/06-89.1

    Article  Google Scholar 

  • Loza V, Berrendero E, Perona E et al (2013) Polyphasic characterization of benthic cyanobacterial diversity from biofilms of the Guadarrama river (Spain): morphological, molecular, and ecological approaches. J Phycol 49:282–297. doi:10.1111/jpy.12036

    Article  PubMed  Google Scholar 

  • Lukešová A, Hrouzek P, Harding K et al (2008) Deployment of the encapsulation/dehydration protocol to cryopreserve diverse microalgae held at the Institute of Soil Biology, Academy of Sciences of the Czech Republic. Cryo-Letters 29:21–26

    PubMed  Google Scholar 

  • Lukešová A, Johansen JR, Martin MP et al (2009) Aulosira bohemensis sp. nov.: further phylogenetic uncertainty at the base of the Nostocales (Cyanobacteria). Phycologia 48:118–129. doi:10.2216/08-56.1

    Article  CAS  Google Scholar 

  • Maiden MC, Bygraves JA, Feil EJ et al (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A 95:3140–3145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mareš J, Hauer T, Komárek J et al (2013) Proposal to conserve the name Gloeothece (Cyanophyceae) with a conserved type. Taxon 62:1056. doi:10.12705/625.24

    Google Scholar 

  • Mareš J, Lara Y, Dadáková I et al (2015) Phylogenetic analysis of cultivation-resistant terrestrial cyanobacteria with massive sheaths (Stigonema spp. and Petalonema alatum, Nostocales, Cyanobacteria) using single-cell and filament sequencing of environmental samples. J Phycol 51:288–297. doi:10.1111/jpy.12273

    Article  PubMed  CAS  Google Scholar 

  • McFadden GI (1999) Endosymbiosis and evolution of the plant cell. Curr Opin Plant Biol 2:513–519

    Article  CAS  PubMed  Google Scholar 

  • Meeks JC, Campbell EL, Summers ML (2002) Cellular differentiation in the cyanobacterium Nostoc punctiforme. Arch Microbiol 178:395–403. doi:10.1007/s00203-002-0476-5

    Article  CAS  PubMed  Google Scholar 

  • Mittelbach GG, Schemske DW, Cornell HV et al (2007) Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol Let 10:325–331. doi:10.1111/j.1461-0248.2007.01020.x

    Article  Google Scholar 

  • Miyashita H, Ikemoto H, Kurano N et al (2003) Acaryochloris marina gen. et sp. nov. (Cyanobacteria), an oxygenic photosynthetic prokaryote containing chl d as a major pigment. J Phycol 39:1247–1253. doi:10.1111/j.0022-3646.2003.03-158.x

    Article  CAS  Google Scholar 

  • Moore LR, Rocap G, Chisholm SW (1998) Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 393:464–467. doi:10.1038/30965

    Article  CAS  PubMed  Google Scholar 

  • Mühlsteinová R, Johansen JR, Pietrasiak N et al (2014) Polyphasic characterization of Kastovskya adunca gen. nov. et comb. nov. (Cyanobacteria: Oscillatoriales), from desert soils of the Atacama Desert, Chile. Phytotaxa 163:216–228. doi:10.11646/phytotaxa.163.4.2

    Google Scholar 

  • Nabout JC, da Silva RB, Carneiro FM et al (2013) How many species of cyanobacteria are there? Using a discovery curve to predict the species number. Biodivers Conserv 22:2907–2918. doi:10.1007/s10531-013-0561-x

    Article  Google Scholar 

  • Nadeau TL, Milbrandt EC, Castenholz RW (2001) Evolutionary relationships of cultivated Antarctic oscillatoriaceans (cyanobacteria). J Phycol 37:650–654. doi:10.1046/j.1529-8817.2001.037004650.x

    Article  Google Scholar 

  • Nägeli C (1849) Gattungen einzellinger Algen. Neue Denkschriften der Allgemeinen Schweizerischen Gesellschaft für die Gesammten Naturwissenschaften 10:1–139

    Google Scholar 

  • Neilan BA, Jacobs D, Del Dot T et al (1997) rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. Int J Syst Bacteriol 47:693–697. doi:10.1099/00207713-47-3-693

    Article  CAS  PubMed  Google Scholar 

  • Neustupa J, Škaloud P (2008) Diversity of subaerial algae and cyanobacteria on tree bark in tropical mountain habitats. Biologia 63:806–812. doi:10.2478/s11756-008-0102-3

    Article  Google Scholar 

  • Neustupa J, Škaloud P (2010) Diversity of subaerial algae and cyanobacteria growing on bark and wood in the lowland tropical forests of Singapore. Plant Ecol Evol 143:51–62. doi:10.5091/plecevo.2010.417

    Article  Google Scholar 

  • Nübel U, Garcia-Pichel F, Muyzer G (2000) The halotolerance and phylogeny of cyanobacteria with tightly coiled trichomes (Spirulina Turpin) and the description of Halospirulina tapeticola gen. nov., sp. nov. Int J Syst Evol Microbiol 50:1265–1277. doi:10.1099/00207713-50-3-1265

  • Oliver RL, Ganf GG (2000) Freshwater blooms. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria, their diversity in time and space. Kluwer, Dordrecht, pp 149–194

    Google Scholar 

  • Olsson-Francis K, de la Torre R, Towner MC et al (2009) Survival of akinetes (resting-state cells of cyanobacteria) in low Earth orbit and simulated extraterrestrial conditions. Orig Life Evol Biosph 39:565–579. doi:10.1007/s11084-009-9167-4

    Article  PubMed  Google Scholar 

  • Oren A (2011) Cyanobacterial systematics and nomenclature as featured in the International Bulletin of Bacteriological Nomenclature and Taxonomy/International Journal of Systematic Bacteriology/International Journal of Systematic and Evolutionary Microbiology. Int J Syst Evol Microbiol 61:10–15. doi:10.1099/ijs.0.018838-0

    Article  PubMed  Google Scholar 

  • Osorio-Santos K, Pietrasiak N, Bohunická M et al (2014) Seven new species of Oculatella (Pseudanabaenales, Cyanobacteria). Eur J Phycol 49:450–470. doi:10.1080/09670262.2014.976843

    Article  Google Scholar 

  • Padisák J (1997) Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology. Arch Hydrobiol Suppl 4:563–593

    Google Scholar 

  • Palinska KA, Liesack W, Rhiel E et al (1996) Phenotype variability of identical genotypes: the need for a combined approach in cyanobacterial taxonomy demonstrated on Merismopedia-like isolates. Arch Microbiol 166:226–233. doi:10.1007/s002030050378

    Article  Google Scholar 

  • Papke RT, Ramsing NB, Bateson MM et al (2003) Geographical isolation in hot spring cyanobacteria. Environ Microbiol 5:650–659. doi:10.1046/j.1462-2920.2003.00460.x

    Article  CAS  PubMed  Google Scholar 

  • Partensky F, Garczarek L (2010) Prochlorococcus: advantages and limits of minimalism. Ann Rev Mar Sci 2:305–331. doi:10.1146/annurev-marine-120308-081034

    Article  PubMed  Google Scholar 

  • Partensky F, Hess WR, Vaulot D (1999) Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol Mol Biol Rev 63:106–127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paul VJ, Thacker RW, Banks K et al (2005) Benthic cyanobacterial bloom impacts the reefs of South Florida (Broward County, USA). Coral Reefs 24:693–697. doi:10.1007/s00338-005-0061-x

    Article  Google Scholar 

  • Perkerson RB, Johansen JR, Kováčik L et al (2011) A unique pseudanabaenalean (cyanobacteria) genus Nodosilinea gen. nov. based on morphological and molecular data. J Phycol 47:1397–1412. doi:10.1111/j.1529-8817.2011.01077.x

    Article  CAS  Google Scholar 

  • Pietrasiak N, Mühlsteinová R, Siegesmund MA et al (2014) Phylogenetic placement of Symplocastrum (Phormidiaceae, Cyanophyceae) with a new combination S. californicum and two new species: S. flechtnerae and S. torsivum. Phycologia 53:529–541. doi:10.2216/14-029.1

  • Pinevich AV (2015) Proposal to consistently apply the International Code of Nomenclature of Prokaryotes (ICNP) to names of the oxygenic photosynthetic bacteria (cyanobacteria), including those validly published under the International Code of Botanical Nomenclature (ICBN)/International Code of Nomenclature for algae, fungi and plants (ICN), and proposal to change Principle 2 of the ICNP. Int J Syst Evol Microbiol 65:1070–1074. doi:10.1099/ijs.0.000034

    Article  PubMed  Google Scholar 

  • Polz MF, Alm EJ, Hanage WP (2013) Horizontal gene transfer and the evolution of bacterial and archeal population structure. Trends Genet 29:170–175. doi:10.1016/j.tig.2012.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poulíčková A, Hašler P, Lysáková M (2008) The ecology of freshwater epipelic algae an update. Phycologia 47:437–450. doi:10.2216/07-59.1

    Article  Google Scholar 

  • Pulíčková A, Dvořák P, Mazalová P et al (2014) Epipelic microphytotrophs: an overlooked assemblage in lake ecosystems. Freshwat Sci 33:513–523. doi:10.1086/676313

    Article  Google Scholar 

  • Rajendhran J, Gunasekaran P (2011) Microbial phylogeny and diversity: small subunit ribosomal RNA sequence analysis and beyond. Microbiol Res 166:99–110. doi:10.1016/j.micres.2010.02.003

    Article  CAS  PubMed  Google Scholar 

  • Řeháková K, Johansen JR, Casamatta DA et al (2007) Morphological and molecular characterization of selected desert soil cyanobacteria: Three species new to science including Mojavia pulchra gen. et sp. nov. Phycologia 46:481–502. doi:10.2216/06-92.1

    Article  Google Scholar 

  • Rippka R, Deruelles J, Waterbury J et al (1979) Genetic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61. doi:10.1099/00221287-111-1-1

    Google Scholar 

  • Rippka R, Castenholz RW, Iteman I (2001a) Form-genus II. Chroococcus Nägeli 1849. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1. Springer, New York, pp 496–497

    Google Scholar 

  • Rippka R, Castenholz RW, Waterbury JB et al (2001b) Form-genus IX. Gloeothece Nägeli 1849. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1. Springer, New York, pp 504–505

    Google Scholar 

  • Rippka R, Waterbury JB, Herdman M et al (2001c) Form-genus I. Chroococcidiopsis Geitler 1933, emend. Waterbury and Stanier 1978. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1. Springer, New York, pp 528–531

    Google Scholar 

  • Rippka R, Waterbury JB, Herdman M et al (2001d) Pleurocapsa-group sensu Waterbury und Stanier 1978, Waterbury 1989. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1. Springer, New York, pp 533–539

    Google Scholar 

  • Robbertse B, Yoder RJ, Boyd A et al (2011) Hal: and automated pipeline for phylogenetic analyses of genomic data. PLoS Currents 3, RRN1213. doi:10.1371/currents.RRN1213

    Article  PubMed  PubMed Central  Google Scholar 

  • Robertson BR, Tezuka N, Watanabe M (2001) Phylogenetic analyses of Synechococcus strains (cyanobacteria) using sequences of 16S rDNA and part of the phycocyanin operon reveal multiple evolutionary lines and reflect phycobilin content. Int J Syst Evol Microbiol 51:861–871. doi:10.1099/00207713-51-3-861

    Article  CAS  PubMed  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) Mrbayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574. doi:10.1093/bioinformatics/btg180

  • Rulík M, Tóthová L, Koutný J et al (2003) Mikrobiální společenstva pisoárů. pp. 68–71. In: Mikrobiológia vody. Zbornik prednasok a posterov. Poprad 8–10.10.2003

    Google Scholar 

  • Sant’Anna CL, Gama Junior WA, Azevedo MTP et al (2011) New morphospecies of Chamaesiphon (Cyanobacteria) from the Atlantic Rainforest, Brazil. Fottea 11:25–30. doi:10.5507/fot.2011.004

  • Schopf JW (2001) The fossil record: tracing the roots of the cyanobacterial lineage. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria: their diversity in time and space. Springer, Berlin, pp 13–35

    Google Scholar 

  • Sheath RG, Cole KM (1992) Biogeography of stream macroalgae in North America. J Phycol 28:448–460. doi:10.1111/j.0022-3646.1992.00448.x

    Article  Google Scholar 

  • Shih PM, Wu D, Latifi A et al (2013) Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proc Natl Acad Sci U S A 110:1053–1058. doi:10.1073/pnas.1217107110

    Article  CAS  PubMed  Google Scholar 

  • Siegesmund MA, Johansen JR, Karsten U et al (2008) Coleofasciculus gen. nov. (Cyanobacteria): morphological and molecular criteria for revision of the genus Microcoleus Gomont. J Phycol 44:1572–1585. doi:10.1111/j.1529-8817.2008.00604.x

    Article  PubMed  Google Scholar 

  • Singh RK, Tiwari SP, Rai AK et al (2011) Cyanobacteria: an emerging source for drug discovery. J Antibiot 64:401–412. doi:10.1038/ja.2011.21

    Article  CAS  PubMed  Google Scholar 

  • Sleep NH (2010) The Hadean-Archean environment. Cold Spring Harb Perspect Biol 2:a002527. doi:10.1101/cshperspect.a002527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sompong U, Hawkins PR, Besley C (2005) The distribution of cyanobacteria across physical and chemical gradients in hot springs in northern Thailand. FEMS Microbiol Ecol 52:365–376. doi:10.1016/j.femsec.2004.12.007

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690. doi:10.1093/bioinformatics/btl446

    Article  CAS  PubMed  Google Scholar 

  • Strunecký O, Bohunická M, Johansen JR et al (2017) A revision of the genus Geitlerinema and a description of the genus Anagnostidinema gen. nov. Fottea in press

    Google Scholar 

  • Strunecký O, Elster J, Komárek J (2011) Taxonomic revision of the fresh–water cyanobacterium “Phormidiummurrayi = Wilmottia murrayi. Fottea 11:57–71. doi:10.5507/fot.2011.007

    Article  Google Scholar 

  • Strunecký O, Komárek J, Johansen JR et al (2013) Molecular and morphological criteria for revision of the genus Microcoleus (Oscillatoriales, Cyanobacteria). J Phycol 49:1167–1180. doi:10.1111/jpy.12128

    Article  PubMed  CAS  Google Scholar 

  • Strunecký O, Komárek J, Šmarda J (2014) Kamptonema (Microcoleaceae, Cyanobacteria), a new genus derivated from the polyphyletic Phormidium on the basis of combined molecular and cytomorphological markers. Preslia 86:193–207

    Google Scholar 

  • Suda S, Watanabe MM, Otsuka S et al (2002) Taxonomic revision of water-bloom-forming species of oscillatorioid cyanobacteria. Int J Syst Evol Microbiol 52:1577–1595. doi:10.1099/00207713-52-5-1577

    CAS  PubMed  Google Scholar 

  • Swingley WD, Chen M, Cheung PC et al (2008) Niche adaptation and genome expansion in the chlorophyll d-producing cyanobacterium Acaryochloris marina. Proc Natl Acad Sci U S A 105:2005–2010. doi:10.1073/pnas.0709772105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taton A, Grubisic S, Brambilla E et al (2003) Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Appl Environ Microbiol 69:5157–5169. doi:10.1128/AEM.69.9.5157-5169.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Gremberghe I, Leliaert F, Mergeay J et al (2011) Lack of phylogeographic structure in the freshwater cyanobacterium Microcystis aeruginosa suggests global dispersal. PLoS One 6, e19561. doi:10.1371/journal.pone.0019561

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vandamme P, Pot B, Gillis M et al (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vincent WF (2007) Cold tolerance in cyanobacteria and life in the cryo-sphere. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Heidelberg, pp 289–304

    Google Scholar 

  • Vonshak A (1997) Spirulina platensis (Arthrospira): physiology, cell-biology and biotechnology. Taylor & Francis Ltd, London

    Google Scholar 

  • Wacklin P, Hoffmann L, Komárek J (2009) Nomenclatural validation of the genetically revised cyanobacterial genus Dolichospermum (Ralfs ex Bornet et Flahault) comb. nova. Fottea 9:59–64. doi:10.5507/fot.2009.005

    Article  Google Scholar 

  • Walker M, Christiansen G, Von Döhrem H (2004) Diversity of coexisting Planktothrix (Cyanobacteria) chemotypes deduced by mass spectral analysis of microcystins and other oligopeptides. Arch Microbiol 182:288–298. doi:10.1007/s00203-004-0711-3

    Article  CAS  Google Scholar 

  • Ward DM, Cohan FM, Bhaya D et al (2008) Genomics, environmental genomics and the issue of microbial species. Heredity 100:207–219. doi:10.1038/sj.hdy.6801011

    Article  CAS  PubMed  Google Scholar 

  • Werner VR, Laughinghouse HD IV, Fiore MF et al (2012) Morphological and molecular studies of Sphaerospermopsis torques-reginae (Cyanobacteria, Nostocales) from South American water blooms. Phycologia 51:228–238. doi:10.2216/11-32.1

    Article  Google Scholar 

  • West NJ, Scanlan DJ (1999) Niche-partitioning of Prochlorococcus populations in a stratified water column in the eastern North Atlantic Ocean. Appl Environ Microbiol 65:2585–2591

    CAS  PubMed  PubMed Central  Google Scholar 

  • West M, West GS (1911) Freshwater algae in British Antarctic Expedition 1907-09. Biol., part 7, 1:263–298

    Google Scholar 

  • Whitton BA (1992) Diversity, ecology and taxonomy of the cyanobacteria. In: Mann NH, Carr NG (eds) Photosynthetic prokaryotes. Plenum Press, New York, pp 1–51

    Chapter  Google Scholar 

  • Whitton BA (2005) Phylum Caynophyta (cyanobacteria). In: John DM, Whitton BA, Brook AJ (eds) The freshwater algal flora of the British Isles: an identification guide to freshwater and terrestrial algae. Natural History Museum, London/Cambridge University Press, Cambridge, pp 25–122

    Google Scholar 

  • Whitton BA, Potts M (2000) The ecology of cyanobacteria. Their diversity in time and space. Springer, Berlin

    Google Scholar 

  • Wilde SB, Johansen JR, Wilde HD et al (2014) Aetokthonos hydrillicola gen. et sp. nov.: epiphytic cyanobacteria associated with invasive aquatic plants and implicated in bird deaths from avian vacuolar myelinopathy. Phytotaxa 181:243–260. doi:10.11646/phytotaxa.181.5.1

    Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A 87:4576–4579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu G, Zhu M, Chen Y (2015) Polyphasic characterization of four species of Pseudanabaena (Oscillatoriales, cyanobacteria) from China and insights into polyphyletic divergence within the Pseudanabaena genus. Phytotaxa 192:1–12. doi:10.11646/phytotaxa.192.1.1

    Google Scholar 

  • Zammit G, Billi D, Albertano P (2012) The subaerophytic cyanobacterium Oculatella subterranea (Oscillatoriales, Cyanophyceae) gen. et sp. nov.: a cytomorphological and molecular description. Eur J Phycol 47:341–354. doi:10.1080/09670262.2012.717106

    Article  Google Scholar 

  • Zhaxybayeva O, Gogarten JP, Charlebois RL et al (2006) Phylogenetic analysis of cyanobacterial genomes: quantification of horizontal gene transfer events. Genome Res 16:1099–1108. doi:10.1101/gr.5322306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to Zdenka Giacintová, who made drawings for Fig. 1. This work was supported by Internal Grant Agency of Palacký University Prf-2016-001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Dvořák .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dvořák, P., Casamatta, D.A., Hašler, P., Jahodářová, E., Norwich, A.R., Poulíčková, A. (2017). Diversity of the Cyanobacteria. In: Hallenbeck, P. (eds) Modern Topics in the Phototrophic Prokaryotes. Springer, Cham. https://doi.org/10.1007/978-3-319-46261-5_1

Download citation

Publish with us

Policies and ethics