Advertisement

Mining Uplink-Downlink User Association in Wireless Heterogeneous Networks

  • Alfredo Cuzzocrea
  • Giorgio M. Grasso
  • Fan Jiang
  • Carson K. LeungEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9937)

Abstract

In the current era of big data, wide varieties of high volumes of valuable data of different veracities can be generated or collected at a high velocity. One of the popular sources of these big data is the wireless networks. Nowadays, the use of smartphones has significantly increased the traffic load in these cellular networks. Consequently, system models that are practical in real-life scenario with the significant for increasing traffic load in cellular networks have drawn attentions of researchers. Studies have been conducted to solve the related interesting research problem of user association in this complex system model. Some of these studies formulated this research problem as a many-to-one matching game, in which users and base stations evaluate each other based on well-defined utilities. In this paper, we examine how the traditional data mining techniques—in particular, the frequent pattern mining techniques—help to solve this research problem. Specifically, we examine the mining of uplink-downlink user association data in wireless heterogeneous networks.

Keywords

Association rules Big data Data mining Downlink Frequent patterns Knowledge discovery Uplink Wireless heterogeneous networks 

Notes

Acknowledgments

This project is partially supported by NSERC (Canada) and University of Manitoba. Thanks E. Hossain and S. Sekander, both from University of Manitoba, for their introduction and expertise on the uplink-downlink association problem.

References

  1. 1.
    Aggarwal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of VLDB, pp. 487–399 (1994)Google Scholar
  2. 2.
    Bayat, S., Louie, R.H.Y., Han, Z., Vucetic, B., Li, Y.: Distributed user association and femtocell allocation in heterogeneous wireless networks. IEEE TC 62(8), 3027–3043 (2014)Google Scholar
  3. 3.
    Boccardi, F., Andrews, J.G., Elshaer, H., Dohler, M., Parkvall, S., Popovski, P., Singh, S.: Why to decouple the uplink and downlink in cellular networks and how to do it. IEEE Commun. Mag. 54(3), 110–117 (2016)CrossRefGoogle Scholar
  4. 4.
    Boostanimehr, H., Bhargava, V.K.: Joint downlink and uplink aware cell association in HetNets with QoS provisioning. IEEE TWC 14(10), 5388–5401 (2015)Google Scholar
  5. 5.
    Cisco visual networking index: global mobile data traffic forecast update, 2015–2020 white paper (2016)Google Scholar
  6. 6.
    Cannataro, M., Cuzzocrea, A., Pugliese, A.: XAHM: an adaptive hypermedia model based on XML. In: Proceedings of SEKE, pp. 627–634 (2002)Google Scholar
  7. 7.
    Cuzzocrea, A., Leung, C.K.: Computing theoretically-sound upper bounds to expected support for frequent pattern mining problems over uncertain big data. In: Carvalho, J.P., Lesot, M.-J., Kaymak, U., Vieira, S., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2016. CCIS, vol. 611, pp. 379–392. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-40581-0_31 CrossRefGoogle Scholar
  8. 8.
    Cuzzocrea, A., Leung, C.K., MacKinnon, R.K.: Mining constrained frequent itemsets from distributed uncertain data. Future Gener. Comput. Syst. 37, 117–126 (2014)CrossRefGoogle Scholar
  9. 9.
    Damnjanovic, A., Montojo, J., Wei, Y., Ji, T., Luo, T., Vajapeyam, M., Yoo, T., Song, O., Malladi, D.: A survey on 3GPP heterogeneous networks. IEEE Commun. Mag. 18(3), 10–21 (2011)Google Scholar
  10. 10.
    El-Hajj, A.M., Dawy, Z., Saad, W.: A stable matching game for joint uplink/downlink resource allocation in OFDMA wireless networks. In: Proceedings of IEEE ICC, pp. 5354–5359 (2012)Google Scholar
  11. 11.
    Furquim, G., Pessin, G., Gomes, P.H., Mendiondo, E.M., Ueyama, J.: A distributed approach to flood prediction using a WSN and ML: a comparative study of ML techniques in a WSN deployed in Brazil. In: Jackowski, K., Burduk, R., Walkowiak, K., Woźniak, M., Yin, H. (eds.) IDEAL 2015. LNCS, vol. 9375, pp. 485–492. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-24834-9_56 CrossRefGoogle Scholar
  12. 12.
    Ghosh, A., Andrews, J.G., Mangalvedhe, N., Ratasuk, R., Mondal, B., Cudak, M., Visotsky, E., Thomas, T.A., Xia, P., Jo, H.S., Dhillon, H.S., Novlan, T.D.: Heterogeneous cellular networks: from theory to practice. IEEE Commun. Mag. 50(6), 54–64 (2012)CrossRefGoogle Scholar
  13. 13.
    Giri, R., Choi, H., Hoo, K.S., Rao, B.D.: User behavior modeling in a cellular network using latent dirichlet allocation. In: Corchado, E., Lozano, J.A., Quintián, H., Yin, H. (eds.) IDEAL 2014. LNCS, vol. 8669, pp. 36–44. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-10840-7_5 Google Scholar
  14. 14.
    Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: Proceedings of ACM SIGMOD, pp. 1–12 (2000)Google Scholar
  15. 15.
    Jiang, F., Leung, C.K.: A data analytic algorithm for managing, querying, and processing uncertain big data in cloud environments. Algorithms 8(4), 1175–1194 (2015)CrossRefGoogle Scholar
  16. 16.
    Jiang, F., Leung, C.K., Zhang, H.: B-mine: frequent pattern mining and its application to knowledge discovery from social networks. In: Li, F., Shim, K., Zheng, K., Liu, G. (eds.) APWeb 2016, Part I. LNCS, vol. 9931. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-45814-4_27 Google Scholar
  17. 17.
    Jie, X., Yan, Z., Skeie, T., Lang, X.: Downlink spectrum sharing for cognitive radio femtocell networks. IEEE Syst. J. 4(4), 524–534 (2010)CrossRefGoogle Scholar
  18. 18.
    Li, C., Li, Y., Song, K., Yang, L.: Energy efficient design for multiuser downlink energy and uplink information transfer in 5G. Sci. China Inf. Sci. 59(2), 1–8 (2016)Google Scholar
  19. 19.
    Pei, J., Han, J., Lu, H., Nishio, S., Tang, S., Yang, D.: H-Mine: hyper-structure mining of frequent patterns in large databases. In: Proceedings of IEEE ICDM, pp. 441–448 (2001)Google Scholar
  20. 20.
    Roth, A.E., Oliveira Sotomayor, M.A.: Two-Sided Matching: A Study in Game-Theoretic Modeling and Analysis. Cambridge University Press, Cambridge (1992)zbMATHGoogle Scholar
  21. 21.
    Saad, W., Han, Z., Zheng, R., Debbah, M., Vincent Poor, H.: A college admissions game for uplink user association in wireless small cell networks. In: Proceedings of IEEE INFOCOM, pp. 1096–1104 (2014)Google Scholar
  22. 22.
    Sekander, S., Tabassum, H., Hossain, E.: A matching game for decoupled uplink-downlink user association in full-duplex small cell networks. In: Proceedings of IEEE GLOBECOM Workshops (2015). doi: 10.1109/GLOCOMW.2015.7414128
  23. 23.
    Sekander, S., Tabassum, H., Hossain, E.: Matching with externalities for decoupled uplink-downlink user association in full-duplex small cell networks. In: Proceedings of IEEE WIECON-ECE, pp. 411–414 (2015)Google Scholar
  24. 24.
    Semiari, O., Saad, W., Valentin, S., Bennis, M., Maham, B.: Matching theory for priority-based cell association in the downlink of wireless small cell networks. In: Proceedings of IEEE ICASSP, pp. 444–448 (2014)Google Scholar
  25. 25.
    Shenoy, P., Bhalotia, J.R., Bawa, M., Shah, D.: Turbo-charging vertical mining of large databases. In: Proceedings of ACM SIGMOD, pp. 22–33 (2000)Google Scholar
  26. 26.
    Singh, S., Zhang, X., Andrews, J.G.: Joint rate and SINR coverage analysis for decoupled uplink-downlink biased cell associations in HetNets. IEEE TWC 14(10), 5360–5373 (2015)Google Scholar
  27. 27.
    Wang, K., Tang, L., Han, J., Liu, J.: Top down FP-growth for association rule mining. In: Bailey, J., Khan, L., Washio, T., Dobbie, G., Huang, J.Z., Wang, R. (eds.) PAKDD 2016. LNCS (LNAI), vol. 2336, pp. 334–340. Springer, Heidelberg (2002). doi: 10.1007/3-540-47887-6_34 CrossRefGoogle Scholar
  28. 28.
    Ye, Q., Rong, B., Chen, Y., Al-Shalash, M., Caramanis, C., Andrews, J.G.: User association for load balancing in heterogeneous cellular networks. IEEE TWC 12(6), 2706–2716 (2013)Google Scholar
  29. 29.
    Yu, B., Cuzzocrea, A., Jeong, D.H., Maydebura, S.: On managing very large sensor-network data using Bigtable. In: Proceedings of IEEE/ACM CCGrid, pp. 918–922 (2012)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Alfredo Cuzzocrea
    • 1
  • Giorgio M. Grasso
    • 2
  • Fan Jiang
    • 3
  • Carson K. Leung
    • 3
    Email author
  1. 1.University of Trieste and ICAR-CNRTrieste (TS)Italy
  2. 2.University of MessinaMessina (ME)Italy
  3. 3.University of ManitobaWinnipegCanada

Personalised recommendations