Advertisement

Predict Two-Dimensional Protein Folding Based on Hydrophobic-Polar Lattice Model and Chaotic Clonal Genetic Algorithm

  • Shuihua Wang
  • Lenan Wu
  • Yuankai Huo
  • Xueyan Wu
  • Hainan Wang
  • Yudong ZhangEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9937)

Abstract

In order to improve the performance of prediction of protein folding problem, we introduce a relatively new chaotic clonal genetic algorithm (abbreviated as CCGA) to solve the 2D hydrophobic-polar lattice model. Our algorithm combines three successful components—(i) standard genetic algorithm (SGA), (ii) clonal selection algorithm (CSA), and (iii) chaotic operator. We compared this proposed CCGA with SGA, artificial immune system (AIS), and immune genetic algorithm (IGA) for various chain lengths. It demonstrated that CCGA had better performance than other methods over large-sized protein chains.

Keywords

Protein folding Chaotic clonal genetic algorithm Clonal selection algorithm Hydrophobic-polar model Artificial immune system 

Notes

Acknowledgment

This paper was supported by Natural Science Foundation of Jiangsu Province (BK20150983), Program of Natural Science Research of Jiangsu Higher Education Institutions (15KJB470010), Nanjing Normal University Research Foundation for Talented Scholars (2013119XGQ0061, 2014119XGQ0080), Open Project Program of the State Key Lab of CAD&CG, Zhejiang University (A1616).

References

  1. 1.
    Cumberworth, A., Bui, J.M., Gsponer, J.: Free energies of solvation in the context of protein folding: implications for implicit and explicit solvent models. J. Comput. Chem. 37, 629–640 (2016)CrossRefGoogle Scholar
  2. 2.
    Dumitriu, A., Golji, J., Labadorf, A.T., Gao, B.B., Beach, T.G., Myers, R.H., Longo, K.A., Latourelle, J.C.: Integrative analyses of proteomics and RNA transcriptomics implicate mitochondrial processes, protein folding pathways and GWAS loci in Parkinson disease. BMC Med. Genomics 9, Article ID: 5 (2016)Google Scholar
  3. 3.
    An, P., Winters, D., Walker, K.W.: Automated high-throughput dense matrix protein folding screen using a liquid handling robot combined with microfluidic capillary electrophoresis. Protein Expr. Purif. 120, 138–147 (2016)CrossRefGoogle Scholar
  4. 4.
    Rivas-Pardo, J.A., Eckels, E.C., Popa, I., Kosuri, P., Linke, W.A., Fernandez, J.M.: Work done by titin protein folding assists muscle contraction. Cell Rep. 14, 1339–1347 (2016)CrossRefGoogle Scholar
  5. 5.
    Santos, J., Villot, P., Dieguez, M.: Emergent protein folding modeled with evolved neural cellular automata using the 3D HP model. J. Comput. Biol. 21, 823–845 (2014)CrossRefGoogle Scholar
  6. 6.
    Ji, G.: A comprehensive survey on particle swarm optimization algorithm and its applications. Math. Probl. Eng. 2015, Article ID: 931256 (2015)Google Scholar
  7. 7.
    Agarwal, P., Bhatnagar, V., Balochian, S.: Swarm Intelligence and Its Applications 2014. Sci. World J. 2014, Article ID: 204294 (2014)Google Scholar
  8. 8.
    Wang, S., Yang, J., Liu, G., Du, S., Yan, J.: Multi-objective path finding in stochastic networks using a biogeography-based optimization method. Simulation 92, 637–647 (2016)CrossRefGoogle Scholar
  9. 9.
    Othman, M.M., El-Khattam, W., Hegazy, Y.G., Abdelaziz, A.Y.: Optimal placement and sizing of voltage controlled distributed generators in unbalanced distribution networks using supervised firefly algorithm. Int. J. Electr. Power Energy Syst. 82, 105–113 (2016)CrossRefGoogle Scholar
  10. 10.
    Wu, L.: Magnetic resonance brain image classification by an improved artificial bee colony algorithm. Prog. Electromagn. Res. 116, 65–79 (2011)CrossRefGoogle Scholar
  11. 11.
    Zhang, Y.: Stock market prediction of S&P 500 via combination of improved BCO approach and BP neural network. Expert Syst. Appl. 36, 8849–8854 (2009)CrossRefGoogle Scholar
  12. 12.
    Lin, C.J., Hsieh, M.H.: An efficient hybrid Taguchi-genetic algorithm for protein folding simulation. Expert Syst. Appl. 36, 12446–12453 (2009)CrossRefGoogle Scholar
  13. 13.
    Huang, C.H., Yang, X.B., He, Z.H.: Protein folding simulations of 2D HP model by the genetic algorithm based on optimal secondary structures. Comput. Biol. Chem. 34, 137–142 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Narayanan, A.G.H., Krishnakumar, U., Judy, M.V.: An enhanced mapreduce framework for solving protein folding problem using a parallel genetic algorithm. In: Satapathy, S.C., Avadhani, P.S., Udgata, S.K., Lakshminarayana, S. (eds.) ICT and Critical Infrastructure: Proceedings of the 48th Annual Convention of Computer Society of India - Vol I. AISC, vol. 248, pp. 241–250. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  15. 15.
    Garza-Fabre, M., Rodriguez-Tello, E., Toscano-Pulido, G.: Constraint-handling through multi-objective optimization: the hydrophobic-polar model for protein structure prediction. Comput. Oper. Res. 53, 128–153 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Giaquinta, E., Pozzi, L.: An effective exact algorithm and a new upper bound for the number of contacts in the hydrophobic-polar two-dimensional lattice model. J. Comput. Biol. 20, 593–609 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Zhang, Y., Wu, L., Wang, S.: Solving two-dimensional hp model by firefly algorithm and simplified energy function. Math. Probl. Eng. 2013, Article ID: 398141 (2013)Google Scholar
  18. 18.
    Huo, Y., Zhu, Q., Wang, S., Wu, L.: Polymorphic BCO for protein folding model. J. Comput. Inf. Syst. 6, 1787–1794 (2010)Google Scholar
  19. 19.
    Zhang, Y., Wang, S., Ji, G., Dong, Z.: Genetic pattern search and its application to brain image classification. Math. Probl. Eng. 2913, Article ID: 580876 (2013)Google Scholar
  20. 20.
    Al Adwan, F., Al Shraideh, M., Al Saidat, M.R.S.: A genetic algorithm approach for breaking of simplified data encryption standard. Int. J. Secur. Appl. 9, 295–303 (2015)Google Scholar
  21. 21.
    Gibbs, M.S., Maier, H.R., Dandy, G.C.: Using characteristics of the optimisation problem to determine the genetic algorithm population size when the number of evaluations is limited. Environ. Modell. Softw. 69, 226–239 (2015)CrossRefGoogle Scholar
  22. 22.
    Javaid, W., Tariq, A., Hussain, I.: A comparison of a standard genetic algorithm with a hybrid genetic algorithm applied to cell formation problem. Adv. Mech. Eng. 11, Article ID: 301751 (2014)Google Scholar
  23. 23.
    Wang, S., Lu, Z., Wei, L., Ji, G., Yang, J.: Fitness-scaling adaptive genetic algorithm with local search for solving the multiple depot vehicle routing problem. Simulation 92, 601–616 (2016)CrossRefGoogle Scholar
  24. 24.
    Sindhuja, L.S., Padmavathi, G.: Replica node detection using enhanced single hop detection with clonal selection algorithm in mobile wireless sensor networks. J. Comput. Netw. Commun. 13, Article ID: 1620343 (2016)Google Scholar
  25. 25.
    Shui, X.G., Zuo, X.Q., Chen, C., Smith, A.E.: A clonal selection algorithm for urban bus vehicle scheduling. Appl. Soft Comput. 36, 36–44 (2015)CrossRefGoogle Scholar
  26. 26.
    Marinaki, M., Marinakis, Y.: A hybridization of clonal selection algorithm with iterated local search and variable neighborhood search for the feature selection problem. Memetic Comput. 7, 181–201 (2015)CrossRefGoogle Scholar
  27. 27.
    Cozma, P., Dragoi, E.N., Mamaliga, I., Curteanu, S., Wukovits, W., Friedl, A., Gavrilescu, M.: Modelling and optimization of CO2 absorption in pneumatic contactors using artificial neural networks developed with clonal selection-based algorithm. Int. J. Nonlinear Sci. Numer. Simul. 16, 97–110 (2015)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Kim, D.H., Cho, J.H.: Advanced intelligence tuning using hybrid of clonal selection and genetic algorithm, GM and PM. Int. J. Comput. Intell. Appl. 14, 19 (2015)CrossRefGoogle Scholar
  29. 29.
    Lin, C.D., Anderson-Cook, C.M., Hamada, M.S., Moore, L.M., Sitter, R.R.: Using genetic algorithms to design experiments: a review. Qual. Reliab. Eng. Int. 31, 155–167 (2015)CrossRefGoogle Scholar
  30. 30.
    Zhang, Y., Huo, Y.: Artificial immune system for protein folding model. J. Converg. Inf. Technol. 6, 55–61 (2011)Google Scholar
  31. 31.
    Zhang, T., Ding, Y., Shao, S.: Protein subcellular location prediction based on pseudo amino acid composition and immune genetic algorithm. In: Huang, D.-S., Li, K., Irwin, G.W. (eds.) ICIC 2006. LNCS (LNBI), vol. 4115, pp. 534–542. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  32. 32.
    Feng, C., Du, S., Yan, J., Wang, Q., Phillips, P.: Feed-forward neural network optimized by hybridization of PSO and ABC for abnormal brain detection. Int. J. Imaging Syst. Technol. 25, 153–164 (2015)CrossRefGoogle Scholar
  33. 33.
    Phillips, P., Dong, Z., Yang, J.: Pathological brain detection in magnetic resonance imaging scanning by wavelet entropy and hybridization of biogeography-based optimization and particle swarm optimization. Progr. Electromagn. Res. 152, 41–58 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Shuihua Wang
    • 1
  • Lenan Wu
    • 2
  • Yuankai Huo
    • 1
  • Xueyan Wu
    • 1
  • Hainan Wang
    • 1
  • Yudong Zhang
    • 1
    Email author
  1. 1.School of Computer Science and TechnologyNanjing Normal UniversityNanjingChina
  2. 2.School of Information Science and EngineeringSoutheast UniversityNanjingChina

Personalised recommendations