Storyteller: Visualizing Perspectives in Digital Humanities Projects

  • Janneke M. van der ZwaanEmail author
  • Maarten van Meersbergen
  • Antske Fokkens
  • Serge ter Braake
  • Inger Leemans
  • Erika Kuijpers
  • Piek Vossen
  • Isa Maks
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 482)


Humanities scholars agree that the visualization of their data should bring order and insight, reveal patterns and provide leads for new research questions. However, simple two-dimensional visualizations are often too static and too generic to meet these needs. Visualization tools for the humanities should be able to deal with the observer dependency, heterogeneity, uncertainty and provenance of data and the complexity of humanities research questions. They should furthermore offer scholars the opportunity to interactively manipulate their data sets and queries. In this paper, we introduce Storyteller, an open source visualization tool designed to interactively explore complex data sets for the humanities. We present the tool, and demonstrate its applicability in three very different humanities projects.


Visualizations Heterogeneous data NLP History Storylines 


  1. 1.
    Van den Akker, C., Legêne, S.: Digital hermeneutics: Agora and the online understanding of cultural heritage. In: Proceedings of the 3rd International Web Science Conference, pp. 1–7 (2011)Google Scholar
  2. 2.
    Bod, R.: Who’s afraid of patterns? The particular versus the universal and the meaning of humanities 3.0. BMGN-Low Countries Hist. Rev. 128(4), 171–180 (2013)CrossRefGoogle Scholar
  3. 3.
    Drucker, J.: Humanities approaches to graphical display. Digit. Humanit. Q. 5(1), 1–21 (2011)MathSciNetGoogle Scholar
  4. 4.
    Drucker, J.: Graphical approaches to the digital humanities. In: A New Companion to Digital Humanities, pp. 238–251 (2016)Google Scholar
  5. 5.
    Jessop, M.: Digital visualization as a scholarly activity. Literary Linguist. Comput. 23(3), 281–293 (2008)CrossRefGoogle Scholar
  6. 6.
    Leemans, I., van der Zwaan, J.M., Maks, I., Kuijpers, E., Steenbergh, K.: Mining Embodied Emotions: a Comparative Analysis of Sentiment and Emotion in Dutch Texts, pp. 1600–1800 (To appear)Google Scholar
  7. 7.
    Novak, J., Micheel, I., Wieneke, L., Dring, M., Melenhorst, M., Garcia Moron, J., Pasini, C., Tagliasacchi, M., Fraternali, P.: HistoGraph–a visualization tool for collaborative analysis of networks from historical social multimedia collections. In: 2014 18th International Conference on Information Visualisation (IV), pp. 241–250 (2014)Google Scholar
  8. 8.
    Ockeloen, N., Fokkens, A., ter Braake, S., Vossen, P., de Boer, V., Schreiber, G., Legêne, S.: BiographyNet: managing provenance at multiple levels and from different perspectives. In: Proceedings of the 3rd International Conference on Linked Science, vol. 1116, pp. 59–71 (2013)Google Scholar
  9. 9.
    Rospocher, M., van Erp, M., Vossen, P., Fokkens, A., Aldabe, I., Rigau, G., Soroa, A., Ploeger, T., Bogaard, T.: Building event-centric knowledge graphs from news. J. Web Seman. 37–38, 132–151 (2016)CrossRefGoogle Scholar
  10. 10.
    Russo, I., Caselli, T., Monachini, M.: Extracting and visualising biographical events from wikipedia. In: Proceedings of the First Conference on Biographical Data in a Digital World 2015, pp. 111–115 (2015)Google Scholar
  11. 11.
    Stokes, P.A.: The problem of digital dating: a model for uncertainty in medieval documents. In: DH2015 Abstracts (2015)Google Scholar
  12. 12.
    Van Hage, W.R., Malaisé, V., Segers, R., Hollink, L., Schreiber, G.: Design and use of the simple event model (sem). Web Semant. Sci. Serv. Agent. World Wide Web 9(2), 128–136 (2011)CrossRefGoogle Scholar
  13. 13.
    Vossen, P., Agerri, R., Aldabe, I., Cybulska, A., van Erp, M., Fokkens, A., Laparra, E., Minard, A.L., Aprosio, A.P., Rigau, G., Rospocher, M., Segers, R.: Newsreader: how semantic web helps natural language processing helps semantic web. Special Issue Knowledge Based Systems. Elsevier (to appear)Google Scholar
  14. 14.
    Vossen, P., Caselli, T., Kontzopoulou, Y.: Storylines for structuring massive streams of news. In: Proceedings of the 1st Workshop on Computing News StoryLines (CNewS 2015) at the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (ACL-IJCNLP 2015), Bejing, China (2015)Google Scholar
  15. 15.
    van der Zwaan, J.M., Leemans, I., Kuijpers, E., Maks, I.: HEEM, a complex model for mining emotions in historical text. In: 2015 IEEE 11th International Conference on e-Science (e-Science), pp. 22–30 (2015)Google Scholar
  16. 16.
    van der Zwaan, J.M., Maks, I., Kuijpers, E., Leemans, I., Steenbergh, K., Roodenburg, H.: Historic Embodied Emotions Model (HEEM) dataset (2016).

Copyright information

© IFIP International Federation for Information Processing 2016

Authors and Affiliations

  • Janneke M. van der Zwaan
    • 1
    Email author
  • Maarten van Meersbergen
    • 1
  • Antske Fokkens
    • 2
  • Serge ter Braake
    • 3
  • Inger Leemans
    • 2
  • Erika Kuijpers
    • 2
  • Piek Vossen
    • 2
  • Isa Maks
    • 2
  1. 1.Netherlands eScience CenterAmsterdamNetherlands
  2. 2.VU UniversityAmsterdamNetherlands
  3. 3.University of AmsterdamAmsterdamNetherlands

Personalised recommendations