Time Series Classification in Reservoir- and Model-Space: A Comparison

  • Witali Aswolinskiy
  • René Felix Reinhart
  • Jochen Steil
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9896)


Learning in the space of Echo State Network (ESN) output weights, i.e. model space, has achieved excellent results in time series classification, visualization and modelling. This work presents a systematic comparison of time series classification in the model space and the classical, discriminative approach with ESNs. We evaluate the approaches on 43 univariate and 18 multivariate time series. It turns out that classification in the model space achieves often better classification rates, especially for high-dimensional motion datasets.


Time series classification Echo State Network Model space 


  1. 1.
    Aswolinskiy, W., Reinhart, R., Steil, J.: Impact of regularization on the model space for time series classification. In: Machine Learning Reports, pp. 49–56 (2015)Google Scholar
  2. 2.
    Aswolinskiy, W., Reinhart, F., Steil, J.: Modelling parameterized processes via regression in the model space. In: European Symposium on Artificial Neural Networks (2016)Google Scholar
  3. 3.
    Barachant, A., Bonnet, S., Congedo, M., Jutten, C.: Classification of covariance matrices using a Riemannian-based kernel for BCI applications. Neurocomputing 112, 172–178 (2013)CrossRefGoogle Scholar
  4. 4.
    Baydogan, M.G., Runger, G.: Time series representation and similarity based on local autopatterns. Data Min. Knowl. Discov. 1–34 (2015). www.mustafabaydogan.com/files/viewcategory/20-data-sets.html
  5. 5.
    Brodersen, K.H., Schofield, T.M., Leff, A.P., Ong, C.S., Lomakina, E.I., Buhmann, J.M., Stephan, K.E.: Generative embedding for model-based classification of fMRI data. PLoS Comput. Biol. 7(6), e1002079 (2011)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chen, H., Tino, P., Rodan, A., Yao, X.: Learning in the model space for cognitive fault diagnosis. IEEE Trans. Neural Netw. Learn. Syst. 25(1), 124–136 (2014)CrossRefGoogle Scholar
  7. 7.
    Chen, H., Tang, F., Tino, P., Cohn, A.G., Yao, X.: Model metric co-learning for time series classification. In: International Joint Conference on Artificial Intelligence, pp. 3387–3394 (2015)Google Scholar
  8. 8.
    Chen, H., Tang, F., Tino, P., Yao, X.: Model-based kernel for efficient time series analysis. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 392–400 (2013)Google Scholar
  9. 9.
    Chen, Y., Keogh, E., Hu, B., Begum, N., Bagnall, A., Mueen, A., Batista, G.: The UCR Time Series Classification Archive, July 2015. www.cs.ucr.edu/~eamonn/time_series_data/
  10. 10.
    Deng, K., Moore, A.W., Nechyba, M.C.: Learning to recognize time series: combining ARMA models with memory-based learning. In: IEEE International Symposium on Computational Intelligence in Robotics and Automation, pp. 246–251 (1997)Google Scholar
  11. 11.
    Ghassempour, S., Girosi, F., Maeder, A.: Clustering multivariate time series using hidden Markov models. Int. J. Environ. Res. Public Health 11(3), 2741–2763 (2014)CrossRefGoogle Scholar
  12. 12.
    Gianniotis, N., Kügler, S., Tino, P., Polsterer, K., Misra, R.: Autoencoding time series for visualisation. In: European Symposium on Artificial Neural Networks (2015)Google Scholar
  13. 13.
    Jaeger, H.: The “echo state” approach to analysing and training recurrent neural networks-with an erratum note. GMD Technical report 148, p. 34 (2001)Google Scholar
  14. 14.
    Kügler, S., Gianniotis, N., Polsterer, K.: An explorative approach for inspecting kepler data. Mon. Not. R. Astron. Soc. 455(4), 4399–4405 (2016)CrossRefGoogle Scholar
  15. 15.
    Lukoševičius, M.: A practical guide to applying echo state networks. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade, 2nd edn. LNCS, vol. 7700, pp. 659–686. Springer, Heidelberg (2012)Google Scholar
  16. 16.
    Reinhart, R., Steil, J.: Efficient policy search in low-dimensional embedding spaces by generalizing motion primitives with a parameterized skill memory. Auton. Robots 38(4), 331–348 (2015)CrossRefGoogle Scholar
  17. 17.
    Rodan, A., Tiňo, P.: Simple deterministically constructed cycle reservoirs with regular jumps. Neural Comput. 24(7), 1822–1852 (2012)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Rodríguez-Fdez, I., Canosa, A., Mucientes, M., Bugarín, A.: STAC: a web platform for the comparison of algorithms using statistical tests. In: IEEE International Conference on Fuzzy Systems (2015)Google Scholar
  19. 19.
    Stulp, F., Raiola, G., Hoarau, A., Ivaldi, S., Sigaud, O.: Learning compact parameterized skills with a single regression. In: IEEE-RAS International Conference on Humanoid Robots (Humanoids), pp. 417–422 (2013)Google Scholar
  20. 20.
    Ude, A., Riley, M., Nemec, B., Kos, A., Asfour, T., Cheng, G.: Synthesizing goal-directed actions from a library of example movements. In: IEEE-RAS International Conference on Humanoid Robots, pp. 115–121 (2007)Google Scholar
  21. 21.
    Vemulapalli, R., Arrate, F., Chellappa, R.: Human action recognition by representing 3D skeletons as points in a Lie group. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 588–595 (2014). http://ravitejav.weebly.com/kbac.html
  22. 22.
    Xing, Z., Pei, J., Keogh, E.: A brief survey on sequence classification. ACM SIGKDD Explor. Newsl. 12(1), 40–48 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Witali Aswolinskiy
    • 1
  • René Felix Reinhart
    • 2
  • Jochen Steil
    • 1
  1. 1.Research Institute for Cognition and Robotics - CoR-LabBielefeldGermany
  2. 2.Fraunhofer Research Institution for Mechatronic Systems Design IEMPaderbornGermany

Personalised recommendations