Constraining the Pre-atmospheric Parameters of Large Meteoroids: Košice, a Case Study

  • Maria Gritsevich
  • Vasily Dmitriev
  • Vladimir Vinnikov
  • Daria Kuznetsova
  • Valery Lupovka
  • Jouni Peltoniemi
  • Sanna Mönkölä
  • Jeffrey Brower
  • Yuri Pupyrev
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 46)

Abstract

Out of a total around 50,000 meteorites currently known to science, the atmospheric passage was recorded instrumentally in only 25 cases with the potential to derive their atmospheric trajectories and pre-impact heliocentric orbits. Similarly, while observations of meteors generate thousands of new entries per month to existing databases, it is extremely rare they lead to meteorite recovery (http://www.meteoriteorbits.info/). These 25 exceptional cases thus deserve a thorough re-examination by different techniques—not only to ensure that we are able to match the model with the observations, but also to enable the best possible interpretation scenario and facilitate the robust extraction of key characteristics of a meteoroid based on the available data. In this study, we evaluate the dynamic mass of the Košice meteoroid using analysis of drag and mass-loss rate available from the observations. We estimate the dynamic pre-atmospheric meteoroid mass at 1850 kg. The pre-fragmentation size proportions of the Košice meteoroid are estimated based on the statistical distribution of the recovered meteorite fragments. The heliocentric orbit of the Košice meteoroid, derived using numerical integration of the equations of motion, is found to be in close agreement to earlier published results.

References

  1. Abramovitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York (1972)Google Scholar
  2. Acton, C.: Ancillary data services of NASA’s navigation and ancillary information facility. Planet. Space Sci. 44(1), 65–70 (1996)ADSCrossRefGoogle Scholar
  3. Andreev, G.: The influence of the meteor position on the zenith attraction. In: Proceedings of the International Meteor Conference, Violau, Germany, 6–9 September 1990, pp. 25–27Google Scholar
  4. Andrews, E.W.: Experimental Studies of Dynamic Fragmentation in Brittle Materials, 240 p. Brown University, Providence, RI (1997)Google Scholar
  5. Aström, J.A.: Statistical models of brittle fragmentation. Adv. Phys. 55, 247–278 (2006)ADSCrossRefGoogle Scholar
  6. Aström, J.A.: Difference between fracture of thin brittle sheets and two-dimensional fracture. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 80(4 Pt 2), 046113 (2009)ADSCrossRefGoogle Scholar
  7. Aström, J.A., Linna, R.P., Timonen, J., Møller, P.F., Oddershede, L.: Exponential and power-law mass distributions in brittle fragmentation. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(2 Pt 2), 026104 (2004)ADSCrossRefGoogle Scholar
  8. Bažant, Z.P.: Scaling of Structural Strength. Hermes Penton Science, London (2002)MATHGoogle Scholar
  9. Bland, P.A.: Fireball cameras: The Desert Fireball Network. Astron. Geophys. 45(5), 5.20–5.23 (2004)ADSCrossRefGoogle Scholar
  10. Bland, P.A., Smith, T.B., Jull, A.J.T., Berry, F.J., Bevan, A.W.R., Cloudt, S., Pillinger, C.T.: The flux of meteorites to the Earth over the last 50,000 years. Mon. Not. Roy. Astron. Soc. 283, 551 (1996)ADSCrossRefGoogle Scholar
  11. Borovička, J., Tóth, J., Igaz, A., Spurný, P., Kalenda, P., Haloda, J., Svoreň, J., Kornoš, L., Silber, E., Brown, P., Husárik, M.: The Košice meteorite fall: Atmospheric trajectory, fragmentation, and orbit. Meteorit. Planet. Sci. 48(10), 1757–1779 (2013)ADSCrossRefGoogle Scholar
  12. Bouquet, A., Baratoux, D., Vaubaillon, J., Gritsevich, M.I., Mimoun, D., Mousis, O., Bouley, S.: Simulation of the capabilities of an orbiter for monitoring the entry of interplanetary matter into the terrestrial atmosphere. Planet. Space Sci. 103, 238–249 (2014)ADSCrossRefGoogle Scholar
  13. Brown, P.G., Weryk, R.J., Wong, D.K., Campbell-Brown, M.D.: The Canadian Meteor Orbit Radar II: a new facility for measurement of the dust environment in near-Earth space. American Astronomical Society, DPS meeting #44, #302.04 (2012)Google Scholar
  14. Buehler, M.J., Abraham, F.F., Gao, H.: Hyperelasticity governs dynamic fracture at a critical length scale. Nature 426, 141–146 (2003)ADSCrossRefGoogle Scholar
  15. Carpinteri, A., Pugno, N.: Are scaling laws on strength of solids related to mechanics or to geometry? Nat. Mater. 4, 421–423 (2005)ADSCrossRefGoogle Scholar
  16. Ceplecha, Z.: Geometric, dynamic, orbital and photometric data on meteoroids from photographic fireball networks. Astron. Inst. Czech. Bull. 38, 222–234 (1987)ADSGoogle Scholar
  17. Ceplecha, Z., Borovička, J., Elford, W.G., Revelle, D.O., Hawkes, R.L., Porubčan, V., Šimek, M.: Meteor phenomena and bodies. Space Sci. Rev. 84, 327–471 (1998)ADSCrossRefGoogle Scholar
  18. Chambers, J.E.: A hybrid symplectic integrator that permits close encounters between massive bodies. Mon. Not. Roy. Astron. Soc. 304(4), 793–799 (1999)ADSMathSciNetCrossRefGoogle Scholar
  19. Collins, G.S., Melosh, H.J., Marcus, R.A.: Earth Impact Effects Program: A Web-based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth. Meteorit. Planet. Sci. 40(6), 817–840 (2005)ADSCrossRefGoogle Scholar
  20. Dmitriev, V., Lupovka, V., Gritsevich, M.: A new approach to meteor orbit determination. In: Rault, J.-L., Roggemans, P. (eds.) Proceedings of the International Meteor Conference, Giron, France, 18–21 September 2014. International Meteor Organization, ISBN 978-2-87355-028-8, pp. 157–159 (2014)Google Scholar
  21. Dmitriev, V., Lupovka, V., Gritsevich, M.: Orbit determination based on meteor observations using numerical integration of equations of motion. Planet. Space Sci. 117, 223–235 (2015)ADSCrossRefGoogle Scholar
  22. Domokos, G., Kun, F., Sipos, A.Á., Szabó, T.: Universality of fragment shapes. Sci. Rep. 5, 9147 (2015)ADSCrossRefGoogle Scholar
  23. Edwards, W.N., Eaton, D.W., Brown, P.G.: Seismic observations of meteors: Coupling theory and observations. Rev. Geophys. 46(4), RG4007 (2007)ADSGoogle Scholar
  24. Emel’yanenko, V.V., Shustov, B.M.: The Chelyabinsk event and the asteroid-comet hazard. Phys. Usp. 56(8), 833–836 (2013)CrossRefGoogle Scholar
  25. Everhart, E.: Implicit single-sequence method for integrating orbits. Celest. Mech. 10, 35–55 (1974)ADSMathSciNetMATHCrossRefGoogle Scholar
  26. Flynn, G.J., Durda, D.D., Kreft, J.W., Sitnitsky, I., Strait, M.: Catastrophic disruption experiments on the Murchison hydrous meteorite. In: Lunar and Planetary Science Conference, vol. 38. (2007)Google Scholar
  27. Folkner, W., Williams, J., Boggs, D.: The Planetary and Lunar Ephemeris DE 421. IPN Progress Report, vol. 42–178, 34 p (2009)Google Scholar
  28. Fries, M., Fries, J.: Doppler weather radar as a meteorite recovery tool. Meteorit. Planet. Sci. 45, 1476–1487 (2010)ADSCrossRefGoogle Scholar
  29. Gnos, E., Lorenzetti, S., Eugster, O., Jull, A.J.T., Hofmann, B.A., Al-Kathiri, A., Eggimann, M.: The Jiddat al Harasis 073 strewn field, Sultanate of Oman. Meteorit. Planet. Sci. 44, 375–387 (2009)ADSCrossRefGoogle Scholar
  30. Gritsevich, M.I.: Approximation of the observed motion of bolides by the analytical solution of the equations of meteor physics. Sol. Syst. Res. 41(6), 509–514 (2007). http://dx.doi.org/10.1134/S003809460706007X ADSCrossRefGoogle Scholar
  31. Gritsevich, M.I.: Estimating the terminal mass of large meteoroids. Dokl. Phys. 53(11), 588–594 (2008a)ADSMATHCrossRefGoogle Scholar
  32. Gritsevich, M.I.: The Pribram, Lost City, Innisfree, and Neuschwanstein falls: an analysis of the atmospheric trajectories. Sol. Syst. Res. 42(5), 372–390 (2008b)ADSCrossRefGoogle Scholar
  33. Gritsevich, M.I.: Identification of fireball dynamic parameters. Moscow Univ. Mech. Bull. 63(1), 1–5 (2008c). http://dx.doi.org/10.1007/s11971-008-1001-5
  34. Gritsevich, M.I.: Determination of parameters of meteor bodies based on flight observational data. Adv. Space Res. 44, 323–334 (2009)ADSCrossRefGoogle Scholar
  35. Gritsevich, M., Koschny, D.: Constraining the luminous efficiency of meteors. Icarus 212(2), 877–884 (2011)ADSCrossRefGoogle Scholar
  36. Gritsevich, M.I., Stulov, V.P., Turchak, L.I.: Consequences for collisions of natural cosmic bodies with the earth atmosphere and surface. Cosmic Res. 50(1), 56–64 (2012). http://dx.doi.org/10.1134/S0010952512010017 ADSMATHCrossRefGoogle Scholar
  37. Gritsevich, M., Vinnikov, V., Kohout, T., Tóth, J., Peltoniemi, J., Turchak, L., Virtanen, J.: A comprehensive study of distribution laws for the fragments of Košice meteorite. Meteorit. Planet. Sci. 49(3), 328–345 (2014a)Google Scholar
  38. Gritsevich, M., Lyytinen, E., Moilanen, J., Kohout, T., Dmitriev, V., Lupovka, V., Midtskogen, V., Kruglikov, N., Ischenko, A., Yakovlev, G., Grokhovsky, V., Haloda, J., Halodova, P., Peltoniemi, J., Aikkila, A., Taavitsainen, A., Lauanne, J., Pekkola, M., Kokko, P., Lahtinen, P., Larionov, M.: First meteorite recovery based on observations by the Finnish Fireball Network. In: Rault, J.-L., Roggemans, P. (eds.) Proceedings of the International Meteor Conference, Giron, France, 18–21 September 2014. International Meteor Organization, ISBN 978-2-87355-028-8, pp. 162–169 (2014b)Google Scholar
  39. Halliday, I., Griffin, A.A., Blackwell, A.T.: The Innisfree meteorite fall—a photo-graphic analysis of fragmentation, dynamics and luminosity. Meteoritics 16(2), 153–170 (1981)ADSCrossRefGoogle Scholar
  40. Halliday, I., Blackwell, A.T., Griffin, A.A.: Detailed records of many unrecovered meteorites in western Canada for which further searches are recommended. J. Roy. Astron. Soc. Can. 83(2), 49–80 (1989)ADSGoogle Scholar
  41. Halliday, I., Griffin, A.A., Blackwell, A.T.: Detailed data for 259 fireballs from the Canada camera network and inferences concerning the influx of large meteoroids. Meteorit. Plan. Sci. 31, 185–217 (1996)ADSCrossRefGoogle Scholar
  42. Harris, A.W., Barucci, M.A., Cano, J.L., Fitzsimmons, A., Fulchignoni, M., Green, S.F., Hestroffer, D., Lappas, V., Lork, W., Michel, P., Morrison, D., Payson, D., Schäfer, F.: The European Union funded NEOShield project: A global approach to near-Earth object impact threat mitigation. Acta Astron. 90(1), 80–84 (2013)CrossRefGoogle Scholar
  43. Hernández, G.: Discrete model for fragmentation with random stopping. Phys. Stat. Mech. Appl. 300(1), 13–24 (2001)MATHCrossRefGoogle Scholar
  44. Hughes, D.W., Harris, N.W.: The distribution of asteroid sizes and its significance. Planet. Space Sci. 42(4), 291–295 (1994)ADSCrossRefGoogle Scholar
  45. IAU SOFA Astrometry Tools, Release 10, 14 April, 2014, 81 pGoogle Scholar
  46. IAU Division A: Fundamental Astronomy “Standards of Fundamental Astronomy Board”, Release 10, 31 October, 2013Google Scholar
  47. IERS Conventions: IERS Technical Note No. 36 (2010)Google Scholar
  48. Jacchia, L.G., Verniani, F., Briggs, R.E.: An analysis of the atmospheric trajectories of 413 precisely reduced photographic meteors. Smithson. Contrib. Astrophys. 10(1), 1–139 (1967)ADSCrossRefGoogle Scholar
  49. Iordache, D.A., Chiroiu, V., Iordache, V.: Study of some theoretical descriptions of the dependence of the fracture parameters on the sample size. Rom. J. Phys. 50(7–8), 847–858 (2005)Google Scholar
  50. Jenniskens, P., Gural, P.S., Dynneson, L., Grigsby, B.J., Newman, K.E., Borden, M., Koop, M., Holman, D.: CAMS: Cameras for Allsky Meteor Surveillance to establish minor meteor showers. Icarus 216(1), 40–61 (2011)ADSCrossRefGoogle Scholar
  51. Kero, J., Szasz, C., Nakamura, T., Meisel, D.D., Ueda, M., Fujiwara, Y., Terasawa, T., Nishimura, K., Watanabe, J.: The 2009–2010 MU radar head echo observation programme for sporadic and shower meteors: radiant densities and diurnal rates. Mon. Not. Roy. Astron. Soc. 425(1), 135–146 (2012)ADSCrossRefGoogle Scholar
  52. Kohout, T., Havrila, K., Tóth, J., Husárik, M., Gritsevich, M., Britt, D., Borovička, J., Spurný, P., Igaz, A., Kornoš, L., Vereš, P., Koza, J., Zigo, P., Gajdoš, Š., Világi, J., Čapek, D., Krišandová, Z., Tomko, D., Šilha, J., Schunová, E., Bodnárová, M., Búzová, D., Krejčová, T.: Density, porosity and magnetic susceptibility of the Košice meteorites and homogeneity of its parent meteoroid. Planet. Space Sci. 93–94, 96–100 (2014)CrossRefGoogle Scholar
  53. Kohout, T., Gritsevich, M., Lyytinen, E., Moilainen, J., Trigo-Rodríguez, J.M., Kruglikov, N., Ishchenko, A., Yakovlev, G., Grokhovsky, V., Haloda, J., Halodova, P., Meier, M.M.M., Laubenstein, M., Dimitrev, V., Lupovka, V.: Annama H5 meteorite fall: Orbit, trajectory, recovery, petrology, noble gases, and cosmogenic radionuclides. Meteorit. Planet. Sci. 50 (2015). MetSoc 2015 special issue, #5209Google Scholar
  54. Kuznetsova, D., Gritsevich, M., Vinnikov, V.: The Kosice meteoroid investigation: From trajectory data to analytic model. In: Rault, J.-L., Roggemans, P. (eds.) Proceedings of the International Meteor Conference, Giron, France, 18–21 September 2014. International Meteor Organization, ISBN 978-2-87355-028-8, pp. 178–181 (2014)Google Scholar
  55. Langbroek, M.: A spreadsheet that calculates meteor orbits. WGN J. Int. Meteor. Org. 32(4), 109–110 (2004)ADSGoogle Scholar
  56. Laurance, M.R., Brownlee, D.E.: The flux of meteoroids and orbital space debris striking satellites in low earth orbit. Nature 323, 136–138 (1986)ADSCrossRefGoogle Scholar
  57. Linna, R.P., Åström, J.A., Timonen, J.: Dimensional effects in dynamic fragmentation of brittle materials. Phys. Rev. E 72, 015601(R) (2005)ADSCrossRefGoogle Scholar
  58. Love, S.G., Brownlee, D.E.: A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science 262, 550–553 (1993)ADSCrossRefGoogle Scholar
  59. Lyytinen, E., Gritsevich, M.: Implications of the atmospheric density profile in the processing of fireball observations. Planet. Space Sci. 120, 35–42 (2016)ADSCrossRefGoogle Scholar
  60. Meibom, A., Balslev, I.: Composite power laws in shock fragmentation. Phys. Rev. Lett. 76, 2492 (1996)ADSCrossRefGoogle Scholar
  61. Meier, M.M.M., Welten, K.C., Riebe, M., Caffee, M.W., Gritsevich, M., Maden, C., Busemann, H.: Park Forest (L5) and the asteroidal source of shocked L chondrites. Meteorit. Planet. Sci. (2016)Google Scholar
  62. McCrosky, R.E., Posen, A., Schwartz, G., Shao, C.-Y.: Lost City meteorite—its recovery and a comparison with other fireballs. J. Geophys. Res. 76, 4090–4108 (1971)ADSCrossRefGoogle Scholar
  63. Moreno-Ibáñez, M., Gritsevich, M., Trigo-Rodríguez, J.M.: New methodology to determine the terminal height of a fireball. Icarus 250, 544–552 (2015)ADSCrossRefGoogle Scholar
  64. Moreno-Ibáñez, M., Gritsevich, M., Trigo-Rodriguez, J.M., Lyytinen, E.: Current progress in the understanding of the physics of large bodies recorded by photographic and digital fireball networks. In: Roggemans, A., Roggemans P. (eds.) Proceedings of the International Meteor Conference, Egmond, The Netherlands, 2–5 June 2016, pp. 192–196Google Scholar
  65. Moreno-Ibáñez, M., Gritsevich, M., Trigo-Rodríguez, J.M.: Measuring the terminal heights of bolides to understand the atmospheric flight of large asteroidal fragments. In: Trigo-Rodríguez, J.M., Gritsevich, M., Palme H. (eds.) Assessment and Mitigation of Asteroid Impact Hazards, pp. 129–151. Springer, New York (2017)Google Scholar
  66. Oberst, J., Molau, S., Heinlein, D., Gritzner, C., Schindler, M., Spurny, P., Ceplecha, Z., Rendtel, J., Betlem, H.: The “European Fireball Network”: Current status and future prospects. Meteorit. Planet. Sci. 33(1), 49–56 (1998)ADSCrossRefGoogle Scholar
  67. Oddershede, L., Dimon, P., Bohr, J.: Self-organized criticality in fragmenting. Phys. Rev. Lett. 71(19), 3107–3110 (1993)ADSCrossRefGoogle Scholar
  68. Oddershede, L., Meibom, A., Bohr, J.: Scaling analysis of meteorite shower mass distributions. Europhys. Lett. 43(5), 598–604 (1998)ADSCrossRefGoogle Scholar
  69. Perna, D., Barucci, M.A., Fulchignoni, M.: The near-Earth objects and their potential threat to our planet. Astron. Astrophys. Rev. 21, 65 (2013)Google Scholar
  70. Povinec, P.P., Masarik, J., Sýkora, I., Kováčik, A., Beňo, J., Meier, M.M.M., Wieler, R., Laubenstein, M., Porubčan, V.: Cosmogenic nuclides in the Košice meteorite: experimental investigations and Monte Carlo simulations. Meteorit. Planet. Sci. 50, 880–892 (2015). doi:10.1111/maps.12380 ADSCrossRefGoogle Scholar
  71. Poppe, A., James, D., Horányi, M.: Measurements of the terrestrial dust influx variability by the Cosmic Dust Experiment. Planet. Space Sci. 59(4), 319–326 (2011)ADSCrossRefGoogle Scholar
  72. Räbinä, J., Mönkölä, S., Rossi, T., Markkanen, J., Gritsevich, M., Muinonen, K.: Controlled time integration for numerical simulation of meteor radar reflections. J. Quant. Spectrosc. Radiat. Transf. 178, 295–305 (2016)ADSCrossRefGoogle Scholar
  73. Reinhardt, J., Chen, X., Liu, W., Manchev, P., Paté-Cornell, M.: Project Fox: Assessing risks posed by asteroids. Amer. Geophys. Union, Fall Meeting 2013, abstract #NH23D-1547 (2013)Google Scholar
  74. Renshaw, C.E., Schulson, E.M.: Universal behaviour in compressive failure of brittle materials. Nature 412(6850), 897–900 (2001)ADSCrossRefGoogle Scholar
  75. Rivkin, A.S., Bottke, W.F.: Hypovelocity impacts in the asteroid belt. Lunar Planet. Sci. 27, 1077–1078 (1996)ADSGoogle Scholar
  76. Shustov, B.M.: On coordinated approach to the problem of asteroid-comet impact hazard. Cosmic Res. 48(5), 378–391 (2010)ADSCrossRefGoogle Scholar
  77. Silber, E.A., ReVelle, D.O., Brown, P.G., Edwards, W.N.: An estimate of the terrestrial influx of large meteoroids from infrasonic measurements. J. Geophys. Res. 114, E08006 (2009). doi:10.1029/2009JE003334 ADSCrossRefGoogle Scholar
  78. Silber, E.A., Brown, P.G.: Optical observations of meteors generating infrasound – I: acoustic signal identification and phenomenology. J. Atmos. Sol. Terr. Phys. 119, 116–128 (2014). doi:10.1016/j.jastp.2014.07.005 ADSCrossRefGoogle Scholar
  79. Silber, E.A., Brown, P.G., Krzeminski, Z.: Optical observations of meteors generating infrasound: weak shock theory and validation. J. Geophys. Res. Planet. 120, 413–428 (2015). doi:10.1002/2014JE004680 ADSCrossRefGoogle Scholar
  80. Sotolongo-Costa, O., Rodriguez, A.H., Rodgers, G.J.: Tsallis entropy and the transition to scaling in fragmentation. Entropy 2(4), 172–177 (2000)ADSMATHCrossRefGoogle Scholar
  81. Sotolongo-Costa, O., Gamez, R., Luzon. F., Posadas A., Weigandt Beckmann, P.: Non Extensivity in Meteor Showers. arXiv:0710.4963 (2007)Google Scholar
  82. Spahn, F., Neto, E.V., Guimarães, A.H.F., Gorban, A.N., Brilliantov, N.V.: A statistical model of aggregate fragmentation. New J. Phys. 16(1), 13031–13041 (2014)CrossRefGoogle Scholar
  83. Spurný, P., Oberst, J., Heinlein, D.: Photographic observations of Neuschwanstein, a second meteorite from the orbit of the Příbram chondrite. Nature 423, 151–153 (2003)ADSCrossRefGoogle Scholar
  84. Spurný, P., Haloda, J., Borovička, J.: Mystery of the Benesov bolide revealed after 20 years. In: Proceedings of the ACM 2012 in Niigata, Japan. LPI Contribution No. 1667, id.6143 (2012)Google Scholar
  85. Stulov, V.P.: Interactions of space bodies with atmospheres of planets. Appl. Mech. Rev. 50(11), 671–688 (1997). http://dx.doi.org/10.1115/1.3101678 ADSCrossRefGoogle Scholar
  86. Tóth, J., Svoreň, J., Borovička, J., Spurný, P., Igaz, A., Kornoš, L., Vereš, P., Husárik, M., Koza, J., Kučera, A., Zigo, P., Gajdoš, Š., Világi, J., Čapek, D., Krišandová, Z., Tomko, D., Šilha, J., Schunová, E., Bodnárová, M., Búzová, D., Krejčová, T.: The Košice meteorite fall: Recovery and strewn field. Meteorit. Planet. Sci. 50(5), 853–863 (2015)ADSCrossRefGoogle Scholar
  87. Trigo-Rodríguez, J.M., Llorca, J., Castro-Tirado, A.J., Ortiz, J.L., Docobo, J.A., Fabregat, J.: The Spanish fireball network. Astron. Geophys. 47(2), 26–28 (2006)Google Scholar
  88. Trigo-Rodríguez, J.M., Lyytinen, E., Gritsevich, M., Moreno-Ibáñez, M., Bottke, W.F., Williams, I., Lupovka, V., Dmitriev, V., Kohout, T., Grokhovsky, V.: Orbit and dynamic origin of the recently recovered Annama’s H5 chondrite. Mon. Not. Roy. Astron. Soc. 449(2), 2119–2127 (2015)ADSCrossRefGoogle Scholar
  89. Turchak, L.I., Gritsevich, M.I.: Meteoroids interaction with the Earth atmosphere. J. Theor. Appl. Mech. 44(4), 15–28 (2014)MathSciNetCrossRefGoogle Scholar
  90. Vaubaillon, J., Koten, P., Margonis, A., Tóth, J., Rudawska, R., Gritsevich, M., Zender, J., McAuliffe, J., Pautet, P.D., Jenniskens, P., Koschny, D., Colas, F., Bouley, S., Maquet, L., Leroy, A., Lecacheux, J., Borovicka, J., Watanabe, J., Oberst, J.: The 2011 Draconids: The first European airborne meteor observation campaign. Earth Moon Planet. 114(3–4), 137–157 (2015)ADSCrossRefGoogle Scholar
  91. Vinković, D., Gritsevich, M., Srećković, V., Pečnik, B., Szabó, G., Debattista, V., Škoda, P., Mahabal, A., Peltoniemi, J., Mönkölä, S., Mickaelian, A., Turunen, E., Kákona, J., Koskinen, J., Grokhovsky, V.: Big data era in meteor science. In: Roggemans, A., Roggemans, P. (eds.) Proceedings of the International Meteor Conference, pp. 319–329 (2016)Google Scholar
  92. Vinnikov, V., Gritsevich, M., Kuznetsova, D., Turchak, L.: Empirical fragment distributions in meteorites, LPSC Abstract # 1439 (2014). http://www.hou.usra.edu/meetings/lpsc2014/pdf/1439.pdf
  93. Vinnikov, V., Gritsevich, M., Turchak, L.: Shape estimation for Košice, Almahata Sitta and Bassikounou meteoroids. In: Proceedings of the International Astronomical Union (Cambridge Journals UK), vol. 10, pp. 394–396 (2015)Google Scholar
  94. Vinnikov, V.V., Gritsevich, M.I., Kuznetsova, D.V., Turchak, L.I.: Estimation of the initial shape of meteoroids based on statistical distributions of fragment masses. Dokl. Phys. 61(6), 305–308 (2016a). http://dx.doi.org/10.1134/S1028335816060021 ADSCrossRefGoogle Scholar
  95. Vinnikov, V., Gritsevich, M., Kuznetsova, D., Krivonosova, O., Zhilenko, D., Turchak, L.: Statistical approach to meteoroid shape estimation. In: Roggemans, A., Roggemans, P. (eds.) Proceedings of the International Meteor Conference, Egmond, The Netherlands, 2–5 June 2016b, pp. 330–332Google Scholar
  96. Wallace, P.: SOFA: Standards of Fundamental Astronomy. Highlights Astron. 11A, 191 (1998)ADSGoogle Scholar
  97. Weryk, R.J., Brown, P.G., Domokos, A., Edwards, W.N., Krzeminski, Z., Nudds, S.H., Welch, D.L.: The Southern Ontario All-sky Meteor Camera network. Earth Moon Planet. 102, 241–246 (2008)ADSCrossRefGoogle Scholar
  98. Weryk, R.J., Campbell-Brown, M.D., Wiegert, P.A., Brown, P.G., Krzeminski, Z., Musci, R.: The Canadian Automated Meteor Observatory (CAMO): System overview. Icarus 225(1), 614–622 (2013)ADSCrossRefGoogle Scholar
  99. Whipple, F.L., Jacchia, L.G.: Reduction methods for photographic meteor trails. SCOA 1, 183–206 (1957)ADSGoogle Scholar
  100. Zoladek, P.: PyFN—multipurpose meteor software. In: Proceedings of the International Meteor Conference, Sibiu, Romania, 15–18 September, 2011, International Meteor Organization, pp. 53–55 (2011)Google Scholar
  101. Zolensky, M., Bland, P., Brown, P., Halliday, I.: Flux of extraterrestrial materials. In: Meteorites and the Early Solar System II, pp. 869–888 (2006)Google Scholar
  102. Zuluaga, J., Ferrin, I.: A preliminary reconstruction of the orbit of the Chelyabinsk meteoroid, arXiv:1302.5377 (2013)Google Scholar
  103. Zuluaga, J., Ferrin, I., Geens, S.: The orbit of the Chelyabinsk event impactor as reconstructed from amateur and public footage. arXiv:1303.1796 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Maria Gritsevich
    • 1
    • 2
    • 3
    • 4
    • 5
  • Vasily Dmitriev
    • 5
  • Vladimir Vinnikov
    • 4
  • Daria Kuznetsova
    • 6
  • Valery Lupovka
    • 5
  • Jouni Peltoniemi
    • 1
    • 2
  • Sanna Mönkölä
    • 7
  • Jeffrey Brower
    • 8
  • Yuri Pupyrev
    • 9
  1. 1.Department of PhysicsUniversity of HelsinkiHelsinkiFinland
  2. 2.Finnish Geospatial Research InstituteMasalaFinland
  3. 3.Institute of Physics and TechnologyUral Federal UniversityEkaterinburgRussia
  4. 4.Department of Computational PhysicsDorodnicyn Computing Centre, Russian Academy of SciencesMoscowRussia
  5. 5.Extraterrestrial LaboratoryState University of Geodesy and Cartography (MIIGAiK)MoscowRussia
  6. 6.Observatoire de Midi-Pyrénées, Laboratoire d’AérologieUniversité Paul SabatierToulouseFrance
  7. 7.Department of Mathematical Information TechnologyUniversity of JyvaskylaJyvaskylaFinland
  8. 8.The Royal Astronomical Society of CanadaEtobicokeCanada
  9. 9.Steklov Mathematical Institute, Russian Academy of ScienceMoscowRussia

Personalised recommendations