Advertisement

Measuring the Terminal Heights of Bolides to Understand the Atmospheric Flight of Large Asteroidal Fragments

  • Manuel Moreno-IbáñezEmail author
  • Maria Gritsevich
  • Josep M. Trigo-Rodríguez
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 46)

Abstract

The extent of penetration into the Earth’s atmosphere of a meteoroid is defined by the point where its kinetic energy is no longer sufficient to produce luminosity. For most of the cases this is the point where the meteoroid disintegrates in the atmosphere due to ablation process and dynamic pressure during flight. However, some of these bodies have particular physical properties (bigger size, higher bulk strength, etc.) or favorable flight conditions (lower entry velocity or/and a convenient trajectory slope, etc.) that allow them to become a meteorite-dropper and reach the ground. In both cases, we define the end of the luminous path of the trajectory as the terminal height or end height. Thus, the end point shows the amount of deceleration till the final braking. We thus assume that the ability of a fireball to produce meteorites is directly related to its terminal height. Previous studies have discussed the likely relationship between fireball atmospheric flight properties and the terminal height. Most of these studies require the knowledge of a set of properties and physical variables which cannot be determined with sufficient accuracy from ground-based observations. The recently validated dimensionless methodology offers a new approach to this problem. All the unknowns can be reduced to only two parameters which are easily derived from observations. Despite the calculation of the analytic solution of the equations of motion is not trivial, some simplifications are admitted. Here, we describe the best performance range and the errors associated with these simplifications. We discuss how terminal heights depend on two or three variables that are easily retrieved from the recordings, provided at least three trajectory (h, v) points. Additionally, we review the importance of terminal heights, and the way they have been estimated in previous studies. Finally we discuss a new approach for calculating terminal heights.

Keywords

Carbonaceous Chondrite Ordinary Chondrite Global Accuracy Entry Velocity Chelyabinsk Meteorite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank Eleanor Sansom for her valuable comments which helped to improve the content of this chapter. Dr. Trigo-Rodríguez and MMI acknowledge support from the Spanish Ministry of Sciences, research project AYA2015-67175-P. MG and MMI were supported, in part, by the Academy of Finland project No 260027. MG was also supported by the Magnus Ehrnrooth Foundation travel grant, and by the Russian Foundation for Basic Research, project Nos 14-08-00204, 16-05-00004 and 16-07-01072. This study was done in the frame of a PhD. on Physics at the Autonomous University of Barcelona (UAB).

References

  1. Borovička, J., Spurný, P., Brown, P., Wiegert, P., Kalenda, P., Clark, D., Shrbený, L.: The trajectory, structure and origin of the Chelyabinsk asteroidal impactor. Nature 503, 235–237 (2013)ADSGoogle Scholar
  2. Bouquet, A., Baratoux, D., Vaubillon, J., Gritsevich, M.I., Mimoun, D., Mousis, O., Bouley, S.: Simulation of the capabilities of an orbiter for monitoring the entry of interplanetary matter into the terrestrial atmosphere. Planet. Space Sci. 103, 238–249 (2014)ADSCrossRefGoogle Scholar
  3. Brown, P., Assink, J.D., Astiz, A., Blaauw, R., Boslough, M.B., Borovička, J., Brachet, N., Brown, D., Campbell-Brown, M., Ceranna, L., Cooke, W., de Groot-Hedlin, C., Drob, D.P., Edwards, W., Evers, L.G., Garces, M., Gill, J., Hedlin, M., Kingery, A., Laske, G., Le Pichon, A., Mialle, P., Moser, D.E., Saffer, A., Silber, E., Smets, P., Spalding, R.E., Spurný, P., Tagliaferri, E., Uren, D., Weryk, R.J., Whitaker, R., Krzeminski, Z.: A 500-kiloton airburst over Chelyabinsk and an enhanced hazard from small impactors. Nature 503, 238–241 (2013)ADSGoogle Scholar
  4. Ceplecha, Z.: Geometric, dynamic, orbital and photometric data on meteoroids from photographic fireball networks. Bull. Astron. Inst. Czech. 38, 222–234 (1987a)ADSGoogle Scholar
  5. Ceplecha, Z.: Classification of meteor orbits. Smithsonian Contr. Astrophys. 11, 35–60 (1967)ADSGoogle Scholar
  6. Ceplecha, Z.: Discrete levels of meteor beginning heights. Smithsonian Astrophys. Obs. Spec. Rep. 279, 1–54 (1968)ADSGoogle Scholar
  7. Ceplecha, Z.: Earth’s influx of different populations of sporadic meteoroids from photographic and television data. Bull. Astron. Inst. Czech. 39, 221–236 (1988)ADSGoogle Scholar
  8. Ceplecha, Z., McCrosky, R.E.: Fireball end heights—a diagnostic for the structure of meteoric material. J. Geophys. Res. 81, 6257–6275 (1976)ADSCrossRefGoogle Scholar
  9. Ceplecha, Z., ReVelle, D.O.: Fragmentation model of meteoroid motion, mass loss, and radiation in the atmosphere. Meteorit. Planet. Sci. 40, 35 (2005)ADSCrossRefGoogle Scholar
  10. Ceplecha, Z., Borovička, J., Elford, W.G., Revelle, D.O., Hawkes, R.L., Porubčan, V., Šimek, M.: Meteor phenomena and bodies. Space Sci. Rev. 84, 327–471 (1998)ADSCrossRefGoogle Scholar
  11. Chyba, F.C., Paul, J.T., Zahnle, K.J.: The 1908 Tunguska explosion: atmospheric disruption of a stony asteroid. Nature 361, 40–44 (1993)ADSCrossRefGoogle Scholar
  12. Collins, G.S., Melosh, H.J., Marcus, R.A.: Earth impact effects program: a web-based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth. Meteorit. Planet. Sci. 40, 817–840 (2005)ADSCrossRefGoogle Scholar
  13. Gritsevich M., Koschny D.: Constraining the luminous efficiency of meteors Icarus, 212(2), 877–884, (2011). http://dx.doi.org/10.1016/j.icarus.2011.01.033
  14. Gritsevich, M., Dmitriev, V., Vinnikov, V., Kuznetsova, D., Lupovka, V., Peltoniemi, J., Mönkölä, S., Brower, J., Pupyrev, Y.: Constraining the pre-atmospheric parameters of large meteoroids: Košice, a case study. In: Trigo-Rodríguez, J.M., Gritsevich, M., Palme, H. (eds.) Assessment and mitigation of asteroid impact hazards, pp.~153–183. Springer, New York (2017). doi: 10.1007/978-3-319-46179-3_8 Google Scholar
  15. Gritsevich, M.I.: Approximation of the observed motion of bolides by the analytical solution of equations of meteor physics. Solar Syst. Res. 41(6), 509–516 (2007)ADSCrossRefGoogle Scholar
  16. Gritsevich, M.I., Popelenskaya, N.V.: Meteor and fireball trajectories for high values of the mass loss parameter. Doklady Phys 53(2), 88--92 (2008). http://dx.doi.org/10.1134/S1028335808020092
  17. Gritsevich, M.I.: Identification of fireball dynamics parameters. Mosc. Univ. Mech. Bull. 63(1), 1–5 (2008a)MathSciNetGoogle Scholar
  18. Gritsevich, M.I.: The Pribram, Lost City, Innisfree, and Neuschwanstein falls: an analysis of the atmospheric trajectories. Solar Sys. Res. 42, 372–390 (2008b)ADSCrossRefGoogle Scholar
  19. Gritsevich, M.I.: Determination of parameters of meteor bodies based on flight observational data. Adv. Space Res. 44, 323–334 (2009)ADSCrossRefGoogle Scholar
  20. Gritsevich, M.I., Stulov, V.P., Turchak, L.I.: Consequences of natural cosmic bodies with the Earth’s atmosphere and surface. Cosm. Res. 50(1), 56–64 (2012)ADSCrossRefGoogle Scholar
  21. Gritsevich, M.I., Lukashenko, V.T., Turchak, L.I.: Approximating the solution of meteor physics equations through the use of elementary functions. Math. Models Comput. Simul. 8(1), 1–6 (2016) doi: 10.1134/S2070048216010026
  22. Halliday, I., Blackwell, A.T., Griffin, A.A.: Photographic observation and orbit of the Innisfree meteorite. Meteoritics 12(3), 248–249 (1977)ADSGoogle Scholar
  23. Halliday, I., Blackwell, A.T., Griffin, A.A.: The Innisfree meteorite and the Canadian camera network. J. R. Astron. Soc. Can. 12(1), 15–39 (1978)ADSGoogle Scholar
  24. Halliday, I., Griffin, A.A., Blackwell, A.T.: The Innisfree meteorite fall—a photographic analysis of fragmentation, dynamics and luminosity. Meteoritics 16, 153–170 (1981)ADSCrossRefGoogle Scholar
  25. Halliday, I., Griffin, A.A., Blackwell, A.T.: Detailed data for 259 fireballs from the Canadian camera network and inferences concerning the influx of large meteoroids. Meteorit. Planet. Sci. 31, 185–217 (1996)ADSCrossRefGoogle Scholar
  26. Hoppe, J.: Die physikalischen Vorgänge beim Eindringen meteoritischer Körpe in die Erdatmosphäre. Astron. Nachr. 262, 169–198 (1937)ADSCrossRefGoogle Scholar
  27. Jacchia, L.G., Whipple, F.L.: The harvard photographic meteor programme. Vistas Astron. 2, 982–994 (1956)ADSCrossRefGoogle Scholar
  28. Kulakov, A.L., Stulov, V.P.: Determination of meteor body parameters from observational data. Astron. Vestn. 26(5), 67–75 (Issledovaniia Solnechnoi Sistemy (Sol. Syst. Res. (Engl. Transl.) 26(5), 478–484)) (1992).Google Scholar
  29. Levin, B.I.: Fizicheskaia teoriia meteorov i meteorne veshchestvo v Solnechnoi sisteme (Physical theory of meteors and meteorite substance in the solar system). Akad. Nauk SSSR, Moscow (in Russian, 1956)Google Scholar
  30. Levin, B.I.: Physikalische Theorie der Meteore und die meteoritische Substanz im Sonnensystem. Akademie-Verlag, Berlin (1961)Google Scholar
  31. Lyytinen, E., Gritsevich, M.: Implications of the atmospheric density profile in the processing of fireball observations. Planet. Space Sci. 120, 35–42 (2016)ADSCrossRefGoogle Scholar
  32. Moreno-Ibáñez, M., Gritsevich, M., Trigo-Rodriguez, J.M.: New methodology to determine the terminal height of a fireball. Icarus 250, 544–552 (2015)ADSCrossRefGoogle Scholar
  33. McCrosky, R.E., Posen, A., Schwartz, G., Shao, C.Y.: Lost City Meteorite—Its Recovery and a Comparison with Other Fireballs. SAO Spec. Rep. 336, 41 (1971)Google Scholar
  34. Popova, O.P., Jenniskens, P., Emel’yanenko, V., Kastashova, S., Biryukov, E., Khaibrakhamanov, S., Shuvalov, V., Rybnov, Y., Dudorov, A., Grokhovsky, V.I.: Chelyabinsk airburst, damage assessment, meteorite recovery, and characterization. Science 342, 1069–1073 (2013)ADSCrossRefGoogle Scholar
  35. Rendtel, J., Arlt, R., Mc Beath, A.: Handbook for visual meteor observers. International Meteor Organization, Potsdam (1995)Google Scholar
  36. Revelle, D.O.: A predictive macroscopic integral radiation efficiency model. J. Geophys. Res. 85, 1803–1808 (1980)ADSCrossRefGoogle Scholar
  37. Revelle, D.O.: NEO fireball diversity: energetics-based entry modeling and analysis techniques. Proceedings IAU Symposium, vol. 236, pp. 95–106 (2007)Google Scholar
  38. Revelle, D.O., Rajan, R.S.: On the luminous efficiency of meteoritic fireballs. J. Geophys. Res. 84, 6255–6262 (1979)ADSCrossRefGoogle Scholar
  39. Stulov, V.P.: Interactions of space bodies with the atmospheres of planets. Appl. Mech. Rev. 50, 671–688 (1997)ADSCrossRefGoogle Scholar
  40. Stulov, V.P., Mirskii, V.N., Vilsyi, A.I.: Aerodinamika bolidov (Aerodynamics of Bolides). Nauka, Moscow (1995) (in Russian)Google Scholar
  41. Tancredi, G., Ishitsuka, J., Schultz, P.H., Harris, R.S., Brown, P., Revelle, D.O., Antier, K., Le Pichon, A., Rosales, D., Vidal, E., Varela, M.E., Sánchez, L., Benavente, S., Bojorquez, J., Cabezas, D., Dalmau, A.: A meteorite crater on Earth formed on September 15, 2007: the Carancas hypervelocity impact. Meteorit. Planet. Sci. 44, 1967–1984 (2009)ADSCrossRefGoogle Scholar
  42. Trigo-Rodríguez, J.M., Llorca, J.: The strength of cometary meteoroids: clues to the structure and evolution of comets. Mon. Not. R. Astron. Soc. 372, 655–660 (2006)ADSCrossRefGoogle Scholar
  43. Trigo-Rodríguez, J.M., Llorca, J.: Erratum: The strength of cometary meteoroids: clues to the structure and evolution of comets. Mon. Not. R. Astron. Soc. 375, 415 (2007)ADSCrossRefGoogle Scholar
  44. Trigo-Rodríguez, J.M., Madiedo, J.M., Williams, I.P., Castro-Tirado, A.J., Llorca, J., Vítek, S., Jelínek, M.: Observations of a very bright fireball and its likely link with comet C/1919 Q2 Metcalf. Mon. Not. R. Astron. Soc. 394, 569–576 (2009)ADSCrossRefGoogle Scholar
  45. Trigo-Rodríguez, J.M., Lyytinen, E., Gritsevich, M., Moreno-Ibáñez, M., Bottke, W.F., Williams, I., Lupovka, V., Dmitriev, V., Kohout, T., Grokhovsky, V.: Orbit and dynamic origin of the recently recovered Annama’s H5 chondrite. Mon. Not. R. Astron. Soc. 449, 2119–2127 (2015)ADSCrossRefGoogle Scholar
  46. Vasilyev, N.V.: The Tunguska Meteorite problem today. Planet. Space Sci. 46, 129–150 (1998)ADSCrossRefGoogle Scholar
  47. Weisberg, M.K., McCoy, T.J., Krot, A.N.: Systematics and evaluation of meteorite classification. In: Lauretta, D.S., McSween, H.Y. (eds.) Meteorites and the Early Solar System II, pp. 19–52. University of Arizona Press, Tucson (2006)Google Scholar
  48. Wetherill, G.W., Revelle, D.O.: Which fireballs are meteorites—a study of the prairie network photographic meteor data. Icarus 48, 308–328 (1981)ADSCrossRefGoogle Scholar
  49. Whipple, F.L., Jacchia, L.: Reduction methods for photographic meteor trails. Smithsonian Contrib. Astrophys. 1, 183–206 (1957) ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Manuel Moreno-Ibáñez
    • 1
    • 2
    Email author
  • Maria Gritsevich
    • 2
    • 3
    • 4
    • 5
  • Josep M. Trigo-Rodríguez
    • 1
  1. 1.Institute of Space Sciences (IEEC-CSIC), Meteorites, Minor Bodies and Planetary Sciences Group, Campus UABCataloniaSpain
  2. 2.Department of Geodesy and GeodynamicsFinnish Geospatial Research Institute (FGI)MasalaFinland
  3. 3.Department of PhysicsUniversity of HelsinkiHelsinkiFinland
  4. 4.Institute of Physics and TechnologyUral Federal UniversityEkaterinburgRussia
  5. 5.Department of Computational PhysicsDorodnicyn Computing Centre, Russian Academy of SciencesMoscowRussia

Personalised recommendations