Advertisement

ForestSim: An Agent-Based Simulation for Bioenergy Sustainability Assessment

  • Mark RouleauEmail author
Chapter
Part of the Nonlinear Systems and Complexity book series (NSCH, volume 18)

Abstract

Global development must become more sustainable. To do so, society must adopt a sustainable energy alternative to fossil fuels (Dincer 2000). Second-generation bioenergy from woody biomass (trees and other woody plants) offers a promising alternative that can avoid both the inevitable finite supply problems and climate change impacts of conventional energy (Hoogwijk et al. 2003). However, the sustainability of second-generation bioenergy depends greatly on the availability of a reliable woody biomass supply (Becker et al. 2009). The provisioning of biomass feedstock requires significant land-use land-cover change in the form of forest harvesting activity that greatly impacts local forest ecology, the viability of bioenergy markets, and other socially valued forest uses. These overlapping and often competing interests make estimating the availability of biomass and assessing its sustainability impacts a highly complex task (Berndes et al. 2003). The current chapter provides a framework for using Agent-Based Modeling (ABM) to assess the sustainability of bioenergy production in a way that accounts for this inherent complexity.

Keywords

Forest Owner Environmental Impact Assessment Sustainability Assessment Life Cycle Analysis Bioenergy Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alfaro, J., Sharp, B., & Miller, S. (2010). Developing LCA techniques for emerging systems: Game theory, agent modeling as prediction tools. Symposium on in Sustainable Systems and Technology (ISSST), 2010 IEEE International, Chicago.Google Scholar
  2. An, L. (2012). Modeling human decisions in coupled human and natural systems: Review of agent-based models. Ecological Modelling, 229, 25–36.CrossRefGoogle Scholar
  3. Ayres, R. U. (1995). Life-cycle analysis: A critique. Life Cycle Management, 14, 199–223.Google Scholar
  4. Becker, D. R., Moseley, C., & Lee, C. (2011). A supply chain analysis framework for assessing state-level forest biomass utilization policies in the United States. Biomass and Bioenergy, 35, 1429–1439.CrossRefGoogle Scholar
  5. Becker, D. R., Skog, K., Hellman, A., Halvorsen, K. E., & Mace, T. (2009). An outlook for sustainable forest bioenergy production in the Lake States. Energy Policy, 37, 5687–5693.CrossRefGoogle Scholar
  6. Berndes, G., Hoogwijk, M., & van den Broek, R. (2003). The contribution of biomass in the future global energy supply: A review of 17 studies. Biomass and Bioenergy, 25, 1–28.CrossRefGoogle Scholar
  7. Bonabeau, E. (2002). Agent-based modeling: Methods and techniques for simulating human systems. PNAS, 99(3), 7280–7287.CrossRefGoogle Scholar
  8. Brown, C., Bakkam, I., Smith, P., & Matthews, R. (2016). An agent-based modeling approach to evaluate factors influencing bioenergy crop adoption in north-east Scotland. Global Change Biology Bioenergy, 8, 226–244.CrossRefGoogle Scholar
  9. Charles, M. B., Ryan, R., Ryan, N., & Oloruntoba, R. (2007). Public policy and biofuels: The way forward? Energy Policy, 35, 5737–5746.CrossRefGoogle Scholar
  10. D’Amours, S., Ronnqvist, M., & Weintraub, A. (2008). Using operational research for supply chain planning in the forest products industry. INFOR, 46(4), 265–281.Google Scholar
  11. Davis, C., Nikolic, I., & Dijkema, J. P. G. (2008). Integrating life-cycle analysis with agent-based modeling: Deciding on bio-electricity. First International Conference on Infrastructure Systems and Services: Building Networks for a Brighter Future (INFRA), pp. 1–6.Google Scholar
  12. Dincer, I. (2000). Renewable energy and sustainable development: A crucial review. Renewable and Sustainable Energy Reviews, 4, 157–175.CrossRefGoogle Scholar
  13. Fargione, J., Hill, J., Tilman, D., Polasky, S., & Hawthorne, P. (2008). Land clearing and the biofuel carbon debt. Science, 319(5867), 1235–1238.CrossRefGoogle Scholar
  14. Finnveden, G. (2000). On the limitations of life cycle assessment and environmental systems analysis tools in general. The International Journal of Life Cycle Assessment, 5(4), 229–238.CrossRefGoogle Scholar
  15. Gan, J., Langeveld, J. W. A., & Smith, C. T. (2014). An agent-based modeling approach for determining corn stover removal rate and transboundary effects. Environmental Management, 53, 333–342.CrossRefGoogle Scholar
  16. Giddings, B., Hopwood, B., & O’Brien, G. (2002). Environment, economy, and society: Fitting them together into sustainable development. Sustainable Development, 10, 187–196.CrossRefGoogle Scholar
  17. Hacking, T., & Guthrie, P. (2008). A framework for clarifying the meaning of Triple Bottom-Line, Integrated, and Sustainability Assessment. Environmental Impact Assessment Review, 28(2–3), 73–89.CrossRefGoogle Scholar
  18. Hoogwijk, M., Faaij, A., Van der Broek, R., Berndes, G., Gielen, D., & Turkenburg, W. (2003). Exploration of the ranges of the global potential of biomass for energy. Biomass and Bioenergy, 25, 119–133.CrossRefGoogle Scholar
  19. Jolliet, O., Margni, M., Charles, R., Humbert, S., Payet, J., Rebitzer, G., & Rosenbaum, R. (2003). Impact 2002+: A new life cycle impact assessment methodology. The International Journal of Life Cycle Assessment, 8(6), 324–330.CrossRefGoogle Scholar
  20. Lind-Riehl, J., Jeltema, S., Morrison, M., Shirkey, G., Mayer, A. L., Rouleau, M., & Winkler, R. (2015). Family legacies and community networks shape private forest management in the western Upper Peninsula of Michigan (USA). Land Use Policy, 45, 95–102.CrossRefGoogle Scholar
  21. Liu, J., Dietz, T., Carpenter, S. R., Folke, C., Alberti, M., Redman, C. L., Schneider, S. H., Ostrom, E., Pell, A. N., Lubchenco, J., Taylor, W. W., Ouyang, Z., Deadman, P., Kratz, T., & Provencher, W. (2007). Coupled human and natural systems. AMBIO: A Journal of the Human Environment, 36(8), 639–649.CrossRefGoogle Scholar
  22. Ma, Z., Becker, D. R., & Kilgore, M. A. (2009). Assessing cumulative impacts within state environmental review frameworks in the United States. Environmental Impact Assessment Review, 29, 390–398.CrossRefGoogle Scholar
  23. Matthews, R., & Dyer, G. (2011). Evaluating the impacts of REDD+ at subnational scales: Are our frameworks and models good enough? Carbon Management, 2(5), 517–527.CrossRefGoogle Scholar
  24. Matthews, R. B., Gilbert, N. G., Roach, J., Pohill, J. G., & Gotts, N. M. (2007). Agent-based land-use models: A review of applications. Landscape Ecology, 22, 1447–1459.CrossRefGoogle Scholar
  25. Mayer, A. L., & Rouleau, M. D. (2013). ForestSim model of impacts of smallholder dynamics: Forested landscapes of the Upper Peninsula of Michigan. International Journal of Forestry Research. vol. 2013, Article ID 520207, 2013, 13p. doi:10.1155/2013/520207Google Scholar
  26. Miller, J. H., & Page, S. E. (2007). Complex adaptive systems: An introduction to computational models of social life. Princeton, NJ: Princeton University Press.zbMATHGoogle Scholar
  27. Mohr, A., & Raman, S. (2013). Lessons from first-generation biofuels and the implications for sustainability appraisal of second generation biofuels. Energy Policy, 63, 114–122.CrossRefGoogle Scholar
  28. Pope, J., Annendale, D., & Morrison-Saunders, A. (2004). Conceptualizing sustainability assessment. Environmental Impact Assessment Review, 24, 595–616.CrossRefGoogle Scholar
  29. Regalbuto, J. (2009). Cellulosic biofuels—got gasoline? Science, 325(5942), 822–824.CrossRefGoogle Scholar
  30. Schubert, J. R., & Mayer, A. L. (2012). Peer influence of nonindustrial private forest owners in the Western Upper Peninsula of Michigan. Open Journal of Forestry, 2(3), 147–155.CrossRefGoogle Scholar
  31. St Clair, S., Hillier, J., & Smith, P. (2008). Estimating pre-harvest greenhouse costs of energy crop production. Biomass and Bioenergy, 32, 442–452.CrossRefGoogle Scholar
  32. Tillman, A. (2000). Significance of decision-making for LCA methodology. Environmental Impact Assessment Review, 20(1), 113–123.CrossRefGoogle Scholar
  33. Vaidya, A., & Mayer, A. L. (2016). Criteria and indicators for a bioenergy production industry identified via stakeholder participation. International Journal of Sustainability and World Ecology, 23(6), 526–540.Google Scholar
  34. Wolde, B., Lal, P., Alavalapati, J., Burli, P., & Munsell, J. (2016). Factors affecting forestland owners’ allocation of non-forested land to pine plantation for bioenergy in Virginia. Biomass and Bioenergy, 85, 69–75.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Social Sciences Department, Environmental and Energy Policy ProgramMichigan Technological UniversityHoughtonUSA

Personalised recommendations