Intelligent Urban Data Monitoring for Smart Cities

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9853)


Urban data management is already an essential element of modern cities. The authorities can build on the variety of automatically generated information and develop intelligent services that improve citizens daily life, save environmental resources or aid in coping with emergencies. From a data mining perspective, urban data introduce a lot of challenges. Data volume, velocity and veracity are some obvious obstacles. However, there are even more issues of equal importance like data quality, resilience, privacy and security. In this paper we describe the development of a set of techniques and frameworks that aim at effective and efficient urban data management in real settings. To do this, we collaborated with the city of Dublin and worked on real problems and data. Our solutions were integrated in a system that was evaluated and is currently utilized by the city.


Anomaly Detection Smart City Traffic Management Ongoing Event Complex Event Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research has been financed by the European Union through the FP7 ERC IDEAS 308019 NGHCS project, the Horizon2020 688380 VaVeL project and a Yahoo Faculty award.


  1. 1.
  2. 2.
  3. 3.
    Attwood, A., Merabti, M., Fergus, P., Abuelmaatti, O.: Sccir: smart cities critical infrastructure response framework. In: Developments in E-systems Engineering (DeSE) 2011, pp. 460–464. IEEE (2011)Google Scholar
  4. 4.
    Biem, A., Bouillet, E., Feng, H., Ranganathan, A., Riabov, A., Verscheure, O., Koutsopoulos, H., Moran, C.: Ibm infosphere streams for scalable, real-time, intelligent transportation services. In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of data, pp. 1093–1104. ACM (2010)Google Scholar
  5. 5.
    Boutsis, I., Kalogeraki, V.: Crowdsourcing under real-time constraints. In: IPDPS, Boston, MA, pp. 753–764, May 2013Google Scholar
  6. 6.
    Boutsis, I., Kalogeraki, V.: Privacy preservation for paricipatory sensing data. In: PerCom, San Diego, CA, USA, March 2013Google Scholar
  7. 7.
    Boutsis, I., Kalogeraki, V.: On task assignment for real-time reliable crowdsourcing. In: ICDCS, Madrid, Spain, pp. 1–10, June 2014Google Scholar
  8. 8.
    Daly, E.M., Lecue, F., Bicer, V.: Westland row why so slow? fusing social media and linked data sources for understanding real-time traffic conditions. In: ACM IUI (2013)Google Scholar
  9. 9.
    Doraiswamy, H., Ferreira, N., Damoulas, T., Freire, J., Silva, C.T.: Using topological analysis to support event-guided exploration in urban data. IEEE Trans. Vis. Comput. Graph. 20(12), 2634–2643 (2014)CrossRefGoogle Scholar
  10. 10.
    Dou, A.J., Kalogeraki, V., Gunopulos, D., Mielikainen, T., Tuulos, V.: Scheduling for real-time mobile mapreduce systems. In: DEBS (2011)Google Scholar
  11. 11.
  12. 12.
  13. 13.
    Filipponi, L., Vitaletti, A., Landi, G., Memeo, V., Laura, G., Pucci, P.: Smart city: an event driven architecture for monitoring public spaces with heterogeneous sensors. In: 2010 Fourth International Conference on Sensor Technologies and Applications (SENSORCOMM), pp. 281–286. IEEE (2010)Google Scholar
  14. 14.
  15. 15.
    Gedik, B., Schneider, S., Hirzel, M., Wu, K.L.: Elastic scaling for data stream processing. IEEE Trans. Parallel Distrib. Syst. 25(6), 1447–1463 (2014)CrossRefGoogle Scholar
  16. 16.
    Hernández-Muñoz, J.M., Vercher, J.B., Muñoz, L., Galache, J.A., Presser, M., Hernández Gómez, L.A., Pettersson, J.: Smart cities at the forefront of the future internet. In: Domingue, J., Galis, A., Gavras, A., Zahariadis, T., Lambert, D., Cleary, F., Daras, P., Krco, S., Müller, H., Li, M.-S., Schaffers, H., Lotz, V., Alvarez, F., Stiller, B., Karnouskos, S., Avessta, S., Nilsson, M. (eds.) FIA 2011. LNCS, vol. 6656, pp. 447–462. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-20898-0_32 CrossRefGoogle Scholar
  17. 17.
  18. 18.
  19. 19.
    Khazaei, H., Zareian, S., Veleda, R., Litoiu, M.: Sipresk: a big data analytic platform for smart transportation. In: EAI International Conference on Big Data and Analytics for Smart Cities (2015)Google Scholar
  20. 20.
  21. 21.
    Li, R., Lei, K.H., Khadiwala, R., Chang, K.C.C.: Tedas: a twitter-based event detection and analysis system. In: 2012 IEEE 28th International Conference on Data Engineering (ICDE), pp. 1273–1276. IEEE (2012)Google Scholar
  22. 22.
    Liao, L., Patterson, D.J., Fox, D., Kautz, H.: Learning and inferring transportation routines. Artif. Intell. 171(5), 311–331 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
  24. 24.
    Ma, F., Li, Y., Li, Q., Qiu, M., Gao, J., Zhi, S., Su, L., Zhao, B., Ji, H., Han, J.: Faitcrowd: fine grained truth discovery for crowdsourced data aggregation. In: KDD, Sydney, Australia, pp. 745–754, August 2015Google Scholar
  25. 25.
    Mayer, R., Koldehofe, B., Rothermel, K.: Meeting predictable buffer limits in the parallel execution of event processing operators. In: Big Data, pp. 402–411 (2014)Google Scholar
  26. 26.
    Münz, G., Li, S., Carle, G.: Traffic anomaly detection using k-means clustering. In: GI/ITG Workshop MMBnet (2007)Google Scholar
  27. 27.
    Nguyen, H., Liu, W., Chen, F.: Discovering congestion propagation patterns in spatio-temporal traffic dataGoogle Scholar
  28. 28.
  29. 29.
    Pang, L.X., Chawla, S., Liu, W., Zheng, Y.: On detection of emerging anomalous traffic patterns using gps data. Data Knowl. Eng. 87, 357–373 (2013)CrossRefGoogle Scholar
  30. 30.
    Roy, S.B., Lykourentzou, I., Thirumuruganathan, S., Amer-Yahia, S., Das, G.: Task assignment optimization in knowledge-intensive crowdsourcing. VLDB J. 24, 467–491 (2015)CrossRefGoogle Scholar
  31. 31.
    Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes twitter users: real-time event detection by social sensors. In: Proceedings of the 19th International Conference on World Wide Web, pp. 851–860. ACM (2010)Google Scholar
  32. 32.
    Saravanou, A., Valkanas, G., Gunopulos, D., Andrienko, G.: Twitter floods when it rains: a case study of the uk floods in early 2014. In: Proceedings of the 24th International Conference on World Wide Web Companion, pp. 1233–1238. International World Wide Web Conferences Steering Committee (2015)Google Scholar
  33. 33.
    da Silva, W.M., Alvaro, A., Tomas, G.H., Afonso, R.A., Dias, K.L., Garcia, V.C.: Smart cities software architectures: a survey. In: Proceedings of the 28th Annual ACM Symposium on Applied Computing, pp. 1722–1727. ACM (2013)Google Scholar
  34. 34.
    Stenneth, L., Wolfson, O., Yu, P.S., Xu, B.: Transportation mode detection using mobile phones and gis information. In: Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 54–63. ACM (2011)Google Scholar
  35. 35.
  36. 36.
  37. 37.
    Zacheilas, N., Kalogeraki, V., Zygouras, N., Panagiotou, N., Gunopulos, D.: Elastic complex event processing exploiting prediction. In: Big Data, Santa Clara, CA, USA. IEEE, October 2015Google Scholar
  38. 38.
    Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S., Stoica, I.: Discretized streams: fault-tolerant streaming computation at scale. In: Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles, pp. 423–438. ACM (2013)Google Scholar
  39. 39.
    Zygiaris, S.: Smart city reference model: assisting planners to conceptualize the building of smart city innovation ecosystems. J. Knowl. Econ. 4(2), 217–231 (2013)CrossRefGoogle Scholar
  40. 40.
    Zygouras, N., Panagiotou, N., Zacheilas, N., Boutsis, I., Kalogeraki, V., Katakis, I., Gunopulos, D.: Towards detection of faulty traffic sensors in real-time. In: MUD2, pp. 53–62 (2015)Google Scholar
  41. 41.
    Zygouras, N., Zacheilas, N., Kalogeraki, V., Kinane, D., Gunopulos, D.: Insights on a scalable and dynamic traffic management system. In: EDBT, Brussels, Belgium, pp. 653–664, March 2015Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.National and Kapodistrian University of AthensAthensGreece
  2. 2.Athens University of Economics and BusinessAthensGreece
  3. 3.Dublin City CouncilDublinIreland

Personalised recommendations