Advertisement

SITS-P2miner: Pattern-Based Mining of Satellite Image Time Series

  • Tuan Nguyen
  • Nicolas Méger
  • Christophe Rigotti
  • Catherine Pothier
  • Rémi Andreoli
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9853)

Abstract

This paper presents a mining system for extracting patterns from Satellite Image Time Series. This system is a fully-fledged tool comprising four main modules for pre-processing, pattern extraction, pattern ranking and pattern visualization. It is based on the extraction of grouped frequent sequential patterns and on swap randomization.

Keywords

Vegetation Index Sequential Pattern Sensor Defect Radar Satellite Magnitude Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Funding for this project was provided by a grant from la Région Rhône-Alpes (Tuan Nguyen’s grant). Other support: C. Rigotti and C. Pothier are members of LabEx IMU (ANR-10-LABX-0088).

References

  1. 1.
    Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proceedings of Conference ICDE, pp. 3–14 (1995)Google Scholar
  2. 2.
    Gueguen, L., Datcu, M.: Image time-series data mining based on the information-bottleneck principle. IEEE Trans. Geosci. Remote Sens. 45(4), 827–838 (2007)CrossRefGoogle Scholar
  3. 3.
    Honda, R., Konishi, O.: Temporal rule discovery for time-series satellite images and integration with RDB. In: Siebes, A., De Raedt, L. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, pp. 204–215. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Julea, A., Méger, N., Bolon, P., Rigotti, C., Doin, M.P., Lasserre, C., Trouvé, E., Lăzărescu, V.N.: Unsupervised spatiotemporal mining of satellite image time series using grouped frequent sequential patterns. IEEE Trans. Geosci. Remote Sens. 49(4), 1417–1430 (2011)CrossRefGoogle Scholar
  5. 5.
    Méger, N., Rigotti, C., Pothier, C.: Swap randomization of bases of sequences for mining satellite image times series. In: Appice, A., Rodrigues, P.P., Santos Costa, V., Gama, J., Jorge, A., Soares, C. (eds.) ECML PKDD 2015. LNCS, vol. 9285, pp. 190–205. Springer, Heidelberg (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Tuan Nguyen
    • 1
  • Nicolas Méger
    • 1
  • Christophe Rigotti
    • 2
  • Catherine Pothier
    • 3
  • Rémi Andreoli
    • 4
  1. 1.Université Savoie Mont Blanc, Polytech Annecy-Chambéry, LISTICAnnecy-le-vieuxFrance
  2. 2.Univ Lyon, INSA-Lyon, CNRS, Inria, LIRIS, UMR5205VilleurbanneFrance
  3. 3.Univ Lyon, INSA-Lyon, SMS-IDVilleurbanneFrance
  4. 4.Bluecham S.A.S.NouméaFrance

Personalised recommendations