A Tool for Subjective and Interactive Visual Data Exploration

  • Bo Kang
  • Kai Puolamäki
  • Jefrey Lijffijt
  • Tijl De Bie
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9853)


We present SIDE, a tool for Subjective and Interactive Visual Data Exploration, which lets users explore high dimensional data via subjectively informative 2D data visualizations. Many existing visual analytics tools are either restricted to specific problems and domains or they aim to find visualizations that align with user’s belief about the data. In contrast, our generic tool computes data visualizations that are surprising given a user’s current understanding of the data. The user’s belief state is represented as a set of projection tiles. Hence, this user-awareness offers users an efficient way to interactively explore yet-unknown features of complex high dimensional datasets.



This work was supported by the European Union through the ERC Consolidator Grant FORSIED (project reference 615517), Academy of Finland (decision 288814), and Tekes (Revolution of Knowledge Work project).


  1. 1.
    Boley, M., Mampaey, M., Kang, B., Tokmakov, P., Wrobel, S.: One click mining: interactive local pattern discovery through implicit preference and performance learning. In: Proceedings of KDD, pp. 27–35 (2013)Google Scholar
  2. 2.
    Chau, D.H., Kittur, A., Hong, J.I., Faloutsos, C.: Apolo: making sense of large network data by combining rich user interaction and machine learning. In: Proceedings of CHI, pp. 167–176 (2011)Google Scholar
  3. 3.
    De Bie, T.: Subjective interestingness in exploratory data mining. In: Tucker, A., Höppner, F., Siebes, A., Swift, S. (eds.) IDA 2013. LNCS, vol. 8207, pp. 19–31. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Dzyuba, V., van Leeuwen, M.: Interactive discovery of interesting subgroup sets. In: Tucker, A., Höppner, F., Siebes, A., Swift, S. (eds.) IDA 2013. LNCS, vol. 8207, pp. 150–161. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Hand, D.J., Mannila, H., Smyth, P.: Principles of Data Mining. MIT Press, Cambridge (2001)Google Scholar
  6. 6.
    Lijffijt, J., Papapetrou, P., Puolamäki, K.: A statistical significance testing approach to mining the most informative set of patterns. DMKD 28(1), 238–263 (2014)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Paurat, D., Gärtner, T.: InVis: a tool for interactive visual data analysis. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013, Part III. LNCS, vol. 8190, pp. 672–676. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Puolamäki, K., Papapetrou, P., Lijffijt, J.: Visually controllable data mining methods. In: Proceedings of ICDMW, pp. 409–417 (2010)Google Scholar
  9. 9.
    Puolamäki, K., Kang, B., Lijffijt, J., De Bie, T.: Interactive visual data exploration with subjective feedback. In: Proceedings of ECML-PKDD (2016, to appear)Google Scholar
  10. 10.
    Ruotsalo, T., Jacucci, G., Myllymäki, P., Kaski, S.: Interactive intent modeling: information discovery beyond search. CACM 58(1), 86–92 (2015)CrossRefGoogle Scholar
  11. 11.
    Ware, C.: Information Visualization: Perception for Design, 3rd edn. Morgan Kaufmann/Elsevier, San Francisco (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Bo Kang
    • 1
  • Kai Puolamäki
    • 2
  • Jefrey Lijffijt
    • 1
  • Tijl De Bie
    • 1
  1. 1.Data Science LabGhent UniversityGhentBelgium
  2. 2.Finnish Institute of Occupational HealthHelsinkiFinland

Personalised recommendations