How Playstyles Evolve: Progression Analysis and Profiling in Just Cause 2

  • Johanna Pirker
  • Simone Griesmayr
  • Anders Drachen
  • Rafet Sifa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9926)

Abstract

Evaluating progression of players in a game can take a variety of forms, but ideally combines playstyle or performance analysis with one or more aspects of progression, e.g. through a level- or mission-based structure. Furthermore, visualization of the results of analysis are essential to ensure that action can be taken on them. In this paper behavioral profiling through Archetype Analysis is combined with progression analysis, expanding on previous work in the area, and extending it into the context of Open-World Games. The proposed methodological framework is applied to the case of the action-adventure title Just Cause 2, focusing on the main storyline. The results show how players navigate the content of the title, and how some playstyles remain constant throughout the game, whereas others emerge or disappear with player progress. Additionally, player performance as a function of progression is evaluated across a number of key metrics.

Keywords

Game analytics Progression Playstyle Player behavior Cluster analysis Visualization 

Notes

Acknowledgments

The authors would like to express their sincere gratitude to Square Enix for making the Just Cause 2 dataset available for analysis.

References

  1. 1.
    Canossa, A., Drachen, A., Srensen, J.R.M.: Arrgghh!!! blending quantitative and qualitative methods to detect player frustration. In: Procedings of the FDG (2011)Google Scholar
  2. 2.
    Drachen, A., Baskin, S., Riley, J., Klabjan, D.: Going out of business: auction house behavior in the massively multi-player online game glitch. J. Entertainment Comput. 5, 20–31 (2014)Google Scholar
  3. 3.
    Drachen, A., Sifa, R., Thurau, C., Bauckhage, C.: A comparison of methods for player clustering via behavioral telemetry. In: Proceedings of the FDG (2013)Google Scholar
  4. 4.
    Drachen, A., Sifa, R., Bauckhage, C., Thurau, C.: Guns, swords and data: clustering of player behavior in computer games in the wild. In: Proceedings of the IEEE CIG (2012)Google Scholar
  5. 5.
    Drachen, A., Thurau, C., Togelius, J., Yannakakis, G., Bauckhage, C.: Game data mining. In: El-Nasr, M.S., Drachen, A., Canossa, A. (eds.) Game Analytics: Maximizing the Value of Player Data, pp. 205–253. Springer, London (2013)CrossRefGoogle Scholar
  6. 6.
    Drachen, A., Canossa, A., Yannakakis, G.: Player modeling using self-organization in Tomb Raider underworld. In: Proceedings of the IEEE CIG (2009)Google Scholar
  7. 7.
    Normoyle, A., Jensen, S.T.: Bayesian clustering of player styles for multiplayer games. In: Proceedings of the AAAI AIIDE (2015)Google Scholar
  8. 8.
    Aggarwal, C., Reddy, C.: Data Clustering: Algorithms and Applications. Chapman & Hall/CRC, Boca Raton (2013)MATHGoogle Scholar
  9. 9.
    Bauckhage, C., Drachen, A., Sifa, R.: Clustering game behavior data. Trans. Comput. Intell. AI Games 7(3), 266–278 (2015)CrossRefGoogle Scholar
  10. 10.
    Bauckhage, C., Sifa, R.: k-Maxoids clustering. In: Proceedings of the KDML-LWA (2015)Google Scholar
  11. 11.
    Cutler, C., Breiman, L.: Archetypal analysis. Technometrics 36(4), 338–347 (1994)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Thurau, C., Kersting, K., Bauckhage, C.: Yes we can: simplex volume maximization for descriptive web-scale matrix factorization. In: Proceedings of the ACM CIKM (2010)Google Scholar
  13. 13.
    Wallner, G., Kriglstein, S.: An Introduction to Gameplay Data Visualization. Game Research Methods, pp. 231–250. ETC Press, Pittsburgh (2015)Google Scholar
  14. 14.
    Shim, K., Srivastava, J.: Behavioral profiles of character types in EverQuest II. In: Proceedings of the IEEE CIG (2010)Google Scholar
  15. 15.
    Lopez, M.: Gameplay Design Fundamentals: Gameplay Progression, Gamasutra, 26 November 2006. http://www.gamasutra.com
  16. 16.
    Seif El-Nasr, M., Drachen, A., Canossa, A.: Game Analytics - Maximizing the Value of Player Data. Springer, London (2013)Google Scholar
  17. 17.
    Sifa, R., Drachen, A., Bauckhage, C.: Behavior evolution in Tomb Raider underworld. In: Proceedings of the IEEE CIG (2013)Google Scholar
  18. 18.
    Sifa, R., Hadiji, F., Runge, J., Drachen, A., Kersting, K., Bauckhage, C.: Predicting purchase decisions in mobile free-to-play games. In: Proceedings of the AAAI AIIDE (2015)Google Scholar
  19. 19.
    Cleveland, W.S.: Visualizing Data. Hobard Press, Tasmania (1993)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2016

Authors and Affiliations

  • Johanna Pirker
    • 1
  • Simone Griesmayr
    • 1
  • Anders Drachen
    • 2
  • Rafet Sifa
    • 3
  1. 1.Graz University of TechnologyGrazAustria
  2. 2.Aalborg University & The Pagonis NetworkAalborgDenmark
  3. 3.Fraunhofer IAISSankt AugustinGermany

Personalised recommendations