Establishment of the Vertebrate Germ Layers

  • Wei-Chia Tseng
  • Mumingjiang Munisha
  • Juan B. Gutierrez
  • Scott T. Dougan
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 953)


The process of germ layer formation is a universal feature of animal development. The germ layers separate the cells that produce the internal organs and tissues from those that produce the nervous system and outer tissues. Their discovery in the early nineteenth century transformed embryology from a purely descriptive field into a rigorous scientific discipline, in which hypotheses could be tested by observation and experimentation. By systematically addressing the questions of how the germ layers are formed and how they generate overall body plan, scientists have made fundamental contributions to the fields of evolution, cell signaling, morphogenesis, and stem cell biology. At each step, this work was advanced by the development of innovative methods of observing cell behavior in vivo and in culture. Here, we take an historical approach to describe our current understanding of vertebrate germ layer formation as it relates to the long-standing questions of developmental biology. By comparing how germ layers form in distantly related vertebrate species, we find that highly conserved molecular pathways can be adapted to perform the same function in dramatically different embryonic environments.


Pander Ectoderm Mesoderm Endoderm TGF-beta Fgf Nodal Morphogen Temporal gradient Extraembryonic tissues Teleost Amniote Amphibian 


  1. Abzhanov A (2013) von Baer’s law for the ages: lost and found principles of developmental evolution. Trends Genet 29:712–722PubMedCrossRefGoogle Scholar
  2. Adams RJ, Kimmel C (2004) Morphogenetic cellular flows during zebrafish gastrulation. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NYGoogle Scholar
  3. Agius E, Oelgeschlager M, Wessely O, Kemp C, De Robertis EM (2000) Endodermal Nodal-related signals and mesoderm induction in Xenopus. Development 127:1173–1183Google Scholar
  4. Albano RM, Arkell R, Beddington RS, Smith JC (1994) Expression of inhibin subunits and follistatin during postimplantation mouse development: decidual expression of activin and expression of follistatin in primitive streak, somites and hindbrain. Development 120:803–813PubMedGoogle Scholar
  5. Albano RM, Godsave SF, Huylebroeck D, Van Nimmen K, Isaacs HV, Slack JM, Smith JC (1990) A mesoderm-inducing factor produced by WEHI-3 murine myelomonocytic leukemia cells is activin A. Development 110:435–443PubMedGoogle Scholar
  6. Albano RM, Groome N, Smith JC (1993) Activins are expressed in preimplantation mouse embryos and in ES and EC cells and are regulated on their differentiation. Development 117:711–723PubMedGoogle Scholar
  7. Alev C, Wu Y, Nakaya Y, Sheng G (2013) Decoupling of amniote gastrulation and streak formation reveals a morphogenetic unity in vertebrate mesoderm induction. Development 140:2691–2696PubMedCrossRefGoogle Scholar
  8. Amaya E, Musci TJ, Kirschner MW (1991) Expression of a dominant negative mutant of the FGF receptor disrupts mesoderm formation in Xenopus embryos. Cell 66:257–270Google Scholar
  9. Andersson O, Bertolino P, Ibanez CF (2007) Distinct and cooperative roles of mammalian Vg1 homologs GDF1 and GDF3 during early embryonic development. Dev Biol 311:500–511PubMedCrossRefGoogle Scholar
  10. Aoki TO, Mathieu J, Saint-Etienne L, Rebagliati MR, Peyrieras N, Rosa FM (2002) Regulation of nodal signalling and mesendoderm formation by TARAM-A, a TGFbeta-related type I receptor. Dev Biol 241:273–288PubMedCrossRefGoogle Scholar
  11. Arendt D, Nubler-Jung K (1999) Rearranging gastrulation in the name of yolk: evolution of gastrulation in yolk-rich amniote eggs. Mech Dev 81:3–22PubMedCrossRefGoogle Scholar
  12. Aristotle, Peck AL (1943) Generation of animals. W. Heinemann/Harvard University Press, London/Cambridge, MAGoogle Scholar
  13. Asashima M, Grunz H (1983) Effects of inducers on inner and outer gastrula ectoderm layers of Xenopus laevis. Differentiation 23:206–212PubMedCrossRefGoogle Scholar
  14. Azar Y, Eyal-Giladi H (1979) Marginal zone cells—the primitive streak-inducing component of the primary hypoblast in the chick. J Embryol Exp Morphol 52:79–88PubMedGoogle Scholar
  15. Bachiller D, Klingensmith J, Kemp C, Belo JA, Anderson RM, May SR, McMahon JA, McMahon AP, Harland RM, Rossant J et al (2000) The organizer factors Chordin and Noggin are required for mouse forebrain development. Nature 403:658–661PubMedCrossRefGoogle Scholar
  16. Bachvarova RF, Skromne I, Stern CD (1998) Induction of primitive streak and Hensen’s node by the posterior marginal zone in the early chick embryo. Development 125:3521–3534PubMedGoogle Scholar
  17. Baer KE, Stieda L (1828) Über Entwickelungsgeschichte der Thiere: Beobachtung und Reflexion. Bei den Gebrüdern Bornträger, KönigsbergCrossRefGoogle Scholar
  18. Ballard WB (1982) Morphogenetic movements and fate map of the cypriniform teleost, Catostomus commersoni (lacepede). J Exp Zool 219:301–321CrossRefGoogle Scholar
  19. Ballard WW (1966a) Origin of the hypoblast in Salmo: I. Does the blastodisc edge turn inward? J Exp Zool A 161:201–209CrossRefGoogle Scholar
  20. Ballard WW (1966b) Origin of the hypoblast in Salmo: II. Outward movement of deep central cells. J Exp Zool 161:211–219CrossRefGoogle Scholar
  21. Ballard WW (1973) A new fate map for Salmo gairdneri. J Exp Zool 184:49–74Google Scholar
  22. Ballard WW, Ginsburg AA (1980) Morphogenetic movements in acipenserid embryos. J Exp Zool 213:69–103CrossRefGoogle Scholar
  23. Bartsch P, Gemballa S, Piotrowski T (1997) The embryonic and larval development of Polypterus senegalus Cuvier, 1829: its staging with reference to external and skeletal features, behaviour and locomotory habits. Acta Zool (Stockholm) 78:309–328Google Scholar
  24. Beddington RS (1982) An autoradiographic analysis of tissue potency in different regions of the embryonic ectoderm during gastrulation in the mouse. J Embryol Exp Morphol 69:265–285PubMedGoogle Scholar
  25. Beddington RS (1994) Induction of a second neural axis by the mouse node. Development 120:613–620PubMedGoogle Scholar
  26. Beddington RS, Robertson EJ (1989) An assessment of the developmental potential of embryonic stem cells in the midgestation mouse embryo. Development 105:733–737PubMedGoogle Scholar
  27. Bensch R, Song S, Ronneberger O, Driever W (2013) Non-directional radial intercalation dominates deep cell behavior during zebrafish epiboly. Biol Open 2:845–854PubMedPubMedCentralCrossRefGoogle Scholar
  28. Bertocchini F, Alev C, Nakaya Y, Sheng G (2013) A little winning streak: the reptilian-eye view of gastrulation in birds. Dev Growth Differ 55:52–59PubMedCrossRefGoogle Scholar
  29. Bertocchini F, Skromne I, Wolpert L, Stern CD (2004) Determination of embryonic polarity in a regulative system: evidence for endogenous inhibitors acting sequentially during primitive streak formation in the chick embryo. Development 131:3381–3390PubMedCrossRefGoogle Scholar
  30. Bertocchini F, Stern CD (2002) The hypoblast of the chick embryo positions the primitive streak by antagonizing nodal signaling. Dev Cell 3:735–744PubMedCrossRefGoogle Scholar
  31. Betchaku T, Trinkaus JP (1978) Contact relations, surface activity, and cortical microfilaments of marginal cells of the enveloping layer and of the yolk syncytial and yolk cytoplasmic layers of Fundulus before and during epiboly. J Exp Zool 206:381–426PubMedCrossRefGoogle Scholar
  32. Birsoy B, Kofron M, Schaible K, Wylie C, Heasman J (2006) Vg1 is an essential signaling molecule in Xenopus development. Development 133:15–20PubMedCrossRefGoogle Scholar
  33. Blum M, Gaunt SJ, Cho KW, Steinbeisser H, Blumberg B, Bittner D, De Robertis EM (1992) Gastrulation in the mouse: the role of the homeobox gene goosecoid. Cell 69:1097–1106PubMedCrossRefGoogle Scholar
  34. Bolker JA (1993a) Gastrulation and mesoderm morphogenesis in the white sturgeon. J Exp Zool 266:116–131PubMedCrossRefGoogle Scholar
  35. Bolker JA (1993b) The mechanism of gastrulation in the white sturgeon. J Exp Zool 266:132–145PubMedCrossRefGoogle Scholar
  36. Born J, Geithe HP, Tiedemann H, Kocher-Becker U (1972) Isolation of a vegetalizing inducing factor. Hoppe Seylers Z Physiol Chem 353:1075–1084PubMedCrossRefGoogle Scholar
  37. Braem F (1895) Was ist ein Keimblatt? Biol Centralbl 15:427–506Google Scholar
  38. Branford WW, Yost HJ (2002) Lefty-dependent inhibition of nodal- and wnt-responsive organizer gene expression is essential for normal gastrulation. Curr Biol 12:2136–2141PubMedCrossRefGoogle Scholar
  39. Brauckmann S (2012) Karl Ernst von Baer (1792–1876) and evolution. Int J Dev Biol 56:653–660PubMedCrossRefGoogle Scholar
  40. Brawand D, Wahli W, Kaessmann H (2008) Loss of egg yolk genes in mammals and the origin of lactation and placentation. PLoS Biol 6:e63PubMedPubMedCentralCrossRefGoogle Scholar
  41. Brennan J, Lu CC, Norris DP, Rodriguez TA, Beddington RS, Robertson EJ (2001) Nodal signalling in the epiblast patterns the early mouse embryo. Nature 411:965–969PubMedCrossRefGoogle Scholar
  42. Bruce AE, Howley C, Dixon Fox M, Ho RK (2005) T-box gene eomesodermin and the homeobox-containing Mix/Bix gene mtx2 regulate epiboly movements in the zebrafish. Dev Dyn 233:105–114PubMedPubMedCentralCrossRefGoogle Scholar
  43. Burdsal CA, Flannery ML, Pedersen RA (1998) FGF-2 alters the fate of mouse epiblast from ectoderm to mesoderm in vitro. Dev Biol 198:231–244Google Scholar
  44. Callebaut M, Van Nueten E (1994) Rauber’s (Koller’s) sickle: the early gastrulation organizer of the avian blastoderm. Eur J Morphol 32:35–48PubMedGoogle Scholar
  45. Callebaut M, Van Nueten E, Bortier H, Harrisson F (2003) Positional information by Rauber’s sickle and a new look at the mechanisms of primitive streak initiation in avian blastoderms. J Morphol 255:315–327PubMedCrossRefGoogle Scholar
  46. Callebaut M, van Nueten E, Bortier H, Harrisson F, van Nassauw L (1996) Map of the Anlage fields in the avian unincubated blastoderm. Eur J Morphol 34:347–361PubMedCrossRefGoogle Scholar
  47. Cao Y, Zhao J, Sun Z, Zhao Z, Postlethwait J, Meng A (2004) fgf17b, a novel member of Fgf family, helps patterning zebrafish embryos. Dev Biol 271:130–143PubMedCrossRefGoogle Scholar
  48. Cha YR, Takahashi S, Wright CV (2006) Cooperative non-cell and cell autonomous regulation of Nodal gene expression and signaling by Lefty/Antivin and Brachyury in Xenopus. Dev Biol 290:246–264PubMedCrossRefGoogle Scholar
  49. Chandrasekharan NM (1966) In vitro vital staining of chelonian blastoderms. Indian J Exp Biol 4:131–134Google Scholar
  50. Chang C, Wilson PA, Mathews LS, Hemmati-Brivanlou A (1997) A Xenopus type I activin receptor mediates mesodermal but not neural specification during embryogenesis. Development 124:827–837Google Scholar
  51. Chen C, Ware SM, Sato A, Houston-Hawkins DE, Habas R, Matzuk MM, Shen MM, Brown CW (2006) The Vg1-related protein Gdf3 acts in a Nodal signaling pathway in the pre-gastrulation mouse embryo. Development 133:319–329PubMedCrossRefGoogle Scholar
  52. Chen S, Kimelman D (2000) The role of the yolk syncytial layer in germ layer patterning in zebrafish. Development 127:4681–4689PubMedGoogle Scholar
  53. Chen Y, Schier AF (2001) The zebrafish Nodal signal Squint functions as a morphogen. Nature 411:607–610PubMedCrossRefGoogle Scholar
  54. Chen Y, Schier AF (2002) Lefty proteins are long-range inhibitors of squint-mediated nodal signaling. Curr Biol 12:2124–2128PubMedCrossRefGoogle Scholar
  55. Cheng AM, Thisse B, Thisse C, Wright CV (2000) The lefty-related factor Xatv acts as a feedback inhibitor of nodal signaling in mesoderm induction and L-R axis development in Xenopus. Development 127:1049–1061Google Scholar
  56. Cheng SK, Olale F, Bennett JT, Brivanlou AH, Schier AF (2003) EGF-CFC proteins are essential coreceptors for the TGF-beta signals Vg1 and GDF1. Genes Dev 17:31–36PubMedPubMedCentralCrossRefGoogle Scholar
  57. Christen B, Slack JM (1997) FGF-8 is associated with anteroposterior patterning and limb regeneration in Xenopus. Dev Biol 192:455–466Google Scholar
  58. Chu J, Shen MM (2010) Functional redundancy of EGF-CFC genes in epiblast and extraembryonic patterning during early mouse embryogenesis. Dev Biol 342:63–73PubMedPubMedCentralCrossRefGoogle Scholar
  59. Chuai M, Zeng W, Yang X, Boychenko V, Glazier JA, Weijer CJ (2006) Cell movement during chick primitive streak formation. Dev Biol 296:137–149PubMedPubMedCentralCrossRefGoogle Scholar
  60. Ciruna B, Rossant J (2001) FGF signaling regulates mesoderm cell fate specification and morphogenetic movement at the primitive streak. Dev Cell 1:37–49PubMedCrossRefGoogle Scholar
  61. Ciruna BG, Schwartz L, Harpal K, Yamaguchi TP, Rossant J (1997) Chimeric analysis of fibroblast growth factor receptor-1 (Fgfr1) function: a role for FGFR1 in morphogenetic movement through the primitive streak. Development 124:2829–2841PubMedGoogle Scholar
  62. Clements D, Friday RV, Woodland HR (1999) Mode of action of VegT in mesoderm and endoderm formation. Development 126:4903–4911PubMedGoogle Scholar
  63. Cobb M (2000) Reading and writing The Book of Nature: Jan Swammerdam (1637–1680). Endeavour 24:122CrossRefGoogle Scholar
  64. Comabella Y, Canabal J, Hurtado A, Garcia-Galano T (2014) Embryonic development of Cuban gar (Atractosteus tristoechus) under laboratory conditions. Anat Histol Embryol 43:495–502Google Scholar
  65. Concha ML, Adams RJ (1998) Oriented cell divisions and cellular morphogenesis in the zebrafish gastrula and neurula: a time-lapse analysis. Development 125:983–994PubMedGoogle Scholar
  66. Conlon FL, Lyons KM, Takaesu N, Barth KS, Kispert A, Herrmann B, Robertson EJ (1994) A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. Development 120:1919–1928PubMedGoogle Scholar
  67. Connolly DJ, Patel K, Cooke J (1997) Chick noggin is expressed in the organizer and neural plate during axial development, but offers no evidence of involvement in primary axis formation. Int J Dev Biol 41:389–396PubMedGoogle Scholar
  68. Cooke J, Takada S, McMahon A (1994) Experimental control of axial pattern in the chick blastoderm by local expression of Wnt and activin: the role of HNK-1 positive cells. Dev Biol 164:513–527PubMedCrossRefGoogle Scholar
  69. Cooke J, Webber JA (1985) Dynamics of the control of body pattern in the development of Xenopus laevis: II. Timing and pattern in the development of single blastomeres (presumptive lateral halves) isolated at the 2-cell stage. J Embryol Exp Morphol 88:113–133Google Scholar
  70. Coolen M, Nicolle D, Plouhinec JL, Gombault A, Sauka-Spengler T, Menuet A, Pieau C, Mazan S (2008) Molecular characterization of the gastrula in the turtle Emys orbicularis: an evolutionary perspective on gastrulation. PLoS One 3:e2676Google Scholar
  71. Cooper MS, Virta VC (2007) Evolution of gastrulation in the ray-finned (actinopterygian) fishes. J Exp Zoolog B Mol Dev Evol 308(5):591–608CrossRefGoogle Scholar
  72. Copp AJ, Roberts HM, Polani PE (1986) Chimaerism of primordial germ cells in the early postimplantation mouse embryo following microsurgical grafting of posterior primitive streak cells in vitro. J Embryol Exp Morphol 95:95–115PubMedGoogle Scholar
  73. Cordenonsi M, Dupont S, Maretto S, Insinga A, Imbriano C, Piccolo S (2003) Links between tumor suppressors. p53 is required for TGF-beta gene responses by cooperating with smads. Cell 113:301–314PubMedCrossRefGoogle Scholar
  74. Cordenonsi M, Montagner M, Adorno M, Zacchigna L, Martello G, Mamidi A, Soligo S, Dupont S, Piccolo S (2007) Integration of TGF-beta and Ras/MAPK signaling through p53 phosphorylation. Science 315:840–843PubMedCrossRefGoogle Scholar
  75. Cornell RA, Kimelman D (1994) Activin-mediated mesoderm induction requires FGF. Development 120:453–462PubMedGoogle Scholar
  76. Cornell RA, Musci TJ, Kimelman D (1995) FGF is a prospective competence factor for early activin-type signals in Xenopus mesoderm induction. Development 121:2429–2437PubMedGoogle Scholar
  77. Crossley PH, Martin GR (1995) The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development 121:439–451PubMedGoogle Scholar
  78. Cruz YP, Yousef A, Selwood L (1996) Fate-map analysis of the epiblast of the dasyurid marsupial Sminthopsis macroura (Gould). Reprod Fertil Dev 8:779–788Google Scholar
  79. D'Amico LA, Cooper MS (2001) Morphogenetic domains in the yolk syncytial layer of axiating zebrafish embryos. Dev Dyn 222:611–624PubMedCrossRefGoogle Scholar
  80. Dale L, Slack JM (1987a) Fate map for the 32-cell stage of Xenopus laevis. Development 99:527–551Google Scholar
  81. Dale L, Slack JM (1987b) Regional specification within the mesoderm of early embryos of Xenopus laevis. Development 100:279–295Google Scholar
  82. Dale L, Smith JC, Slack JM (1985) Mesoderm induction in Xenopus laevis: a quantitative study using a cell lineage label and tissue-specific antibodies. J Embryol Exp Morphol 89:289–312Google Scholar
  83. Davidson EH (2010) The regulatory genome: gene regulatory networks in development and evolution. Academic, San DiegoGoogle Scholar
  84. Delarue M, Johnson KE, Boucaut JC (1994) Superficial cells in the early gastrula of Rana pipiens contribute to mesodermal derivatives. Dev Biol 165:702–715Google Scholar
  85. Deng CX, Wynshaw-Boris A, Shen MM, Daugherty C, Ornitz DM, Leder P (1994) Murine FGFR-1 is required for early postimplantation growth and axial organization. Genes Dev 8:3045–3057PubMedCrossRefGoogle Scholar
  86. Devillers C (1961) Structural and dynamic aspects of the developemnt of the telesotean egg. Adv Morphol 1:379–428CrossRefGoogle Scholar
  87. Ding J, Yang L, Yan YT, Chen A, Desai N, Wynshaw-Boris A, Shen MM (1998) Cripto is required for correct orientation of the anterior-posterior axis in the mouse embryo. Nature 395:702–707PubMedCrossRefGoogle Scholar
  88. Dohrmann CE, Hemmati-Brivanlou A, Thomsen GH, Fields A, Woolf TM, Melton DA (1993) Expression of activin mRNA during early development in Xenopus laevis. Dev Biol 157:474–483Google Scholar
  89. Dohrmann CE, Kessler DS, Melton DA (1996) Induction of axial mesoderm by zDVR-1, the zebrafish orthologue of Xenopus Vg1. Dev Biol 175:108–117Google Scholar
  90. Domazet-Loso T, Tautz D (2010) A phylogenetically based transcriptome age index mirrors ontogenetic divergence patterns. Nature 468:815–818PubMedCrossRefGoogle Scholar
  91. Dougan ST, Warga RM, Kane DA, Schier AF, Talbot WS (2003) The role of the zebrafish nodal-related genes squint and cyclops in patterning of mesendoderm. Development 130:1837–1851Google Scholar
  92. Draper BW, Stock DW, Kimmel CB (2003) Zebrafish fgf24 functions with fgf8 to promote posterior mesodermal development. Development 130:4639–4654PubMedCrossRefGoogle Scholar
  93. Duboule D (1994) Temporal colinearity and the phylotypic progression: a basis for the stability of a vertebrate Bauplan and the evolution of morphologies through heterochrony. Dev Suppl, 135–142Google Scholar
  94. Dyson S, Gurdon JB (1998) The interpretation of position in a morphogen gradient as revealed by occupancy of activin receptors. Cell 93:557–568PubMedCrossRefGoogle Scholar
  95. Erter CE, Solnica-Krezel L, Wright CV (1998) Zebrafish nodal-related 2 encodes an early mesendodermal inducer signaling from the extraembryonic yolk syncytial layer. Dev Biol 204:361–372PubMedCrossRefGoogle Scholar
  96. Eyal-Giladi H (1984) The gradual establishment of cell commitments during the early stages of chick development. Cell Differ 14:245–255PubMedCrossRefGoogle Scholar
  97. Eyal-Giladi H, Debby A, Harel N (1992) The posterior section of the chick’s area pellucida and its involvement in hypoblast and primitive streak formation. Development 116:819–830Google Scholar
  98. Fan X, Dougan ST (2007) The evolutionary origin of nodal-related genes in teleosts. Dev Genes Evol 217:807–813PubMedCrossRefGoogle Scholar
  99. Fan X, Hagos EG, Xu B, Sias C, Kawakami K, Burdine RD, Dougan ST (2007) Nodal signals mediate interactions between the extra-embryonic and embryonic tissues in zebrafish. Dev Biol 310:363–378PubMedCrossRefGoogle Scholar
  100. Feldman B, Concha ML, Saude L, Parsons MJ, Adams RJ, Wilson SW, Stemple DL (2002) Lefty antagonism of squint is essential for normal gastrulation. Curr Biol 12:2129–2135PubMedCrossRefGoogle Scholar
  101. Feldman B, Dougan ST, Schier AF, Talbot WS (2000) Nodal-related signals establish mesendodermal fate and trunk neural identity in zebrafish. Curr Biol 10:531–534PubMedCrossRefGoogle Scholar
  102. Feldman B, Gates MA, Egan ES, Dougan ST, Rennebeck G, Sirotkin HI, Schier AF, Talbot WS (1998) Zebrafish organizer development and germ-layer formation require nodal-related signals. Nature 395:181–185PubMedCrossRefGoogle Scholar
  103. Feldman B, Poueymirou W, Papaioannou VE, DeChiara TM, Goldfarb M (1995) Requirement of FGF-4 for postimplantation mouse development. Science 267:246–249PubMedCrossRefGoogle Scholar
  104. Fink RD, Trinkaus JP (1988) Fundulus deep cells: directional migration in response to epithelial wounding. Dev Biol 129:179–190Google Scholar
  105. Fischer S, Draper BW, Neumann CJ (2003) The zebrafish fgf24 mutant identifies an additional level of Fgf signaling involved in vertebrate forelimb initiation. Development 130:3515–3524PubMedCrossRefGoogle Scholar
  106. Fisher ME, Isaacs HV, Pownall ME (2002) eFGF is required for activation of XmyoD expression in the myogenic cell lineage of Xenopus laevis. Development 129:1307–1315Google Scholar
  107. Fisher S, Amacher SL, Halpern ME (1997) Loss of cerebum function ventralizes the zebrafish embryo. Development 124:1301–1311PubMedGoogle Scholar
  108. Fletcher RB, Baker JC, Harland RM (2006) FGF8 spliceforms mediate early mesoderm and posterior neural tissue formation in Xenopus. Development 133:1703–1714Google Scholar
  109. Foley AC, Skromne I, Stern CD (2000) Reconciling different models of forebrain induction and patterning: a dual role for the hypoblast. Development 127:3839–3854PubMedGoogle Scholar
  110. Freyer C, Zeller U, Renfree MB (2003) The marsupial placenta: a phylogenetic analysis. J Exp Zool A Comp Exp Biol 299:59–77PubMedCrossRefGoogle Scholar
  111. Furthauer M, Thisse B, Thisse C (1999) Three different noggin genes antagonize the activity of bone morphogenetic proteins in the zebrafish embryo. Dev Biol 214:181–196PubMedCrossRefGoogle Scholar
  112. Gardner RL (1983) Origin and differentiation of extraembryonic tissues in the mouse. Int Rev Exp Pathol 24:63–133PubMedGoogle Scholar
  113. Gardner RL, Cockroft DL (1998) Complete dissipation of coherent clonal growth occurs before gastrulation in mouse epiblast. Development 125:2397–2402PubMedGoogle Scholar
  114. Gardner RL, Rossant J (1979) Investigation of the fate of 4–5 day post-coitum mouse inner cell mass cells by blastocyst injection. J Embryol Exp Morphol 52:141–152PubMedGoogle Scholar
  115. Ge W, Gallin WJ, Strobeck C, Peter RE (1993) Cloning and sequencing of goldfish activin subunit genes: strong structural conservation during vertebrate evolution. Biochem Biophys Res Commun 193:711–717PubMedCrossRefGoogle Scholar
  116. Gemmell RT, Veitch C, Nelson J (2002) Birth in marsupials. Comp Biochem Physiol B Biochem Mol Biol 131:621–630PubMedCrossRefGoogle Scholar
  117. Gerhart J, Danilchik M, Doniach T, Roberts S, Rowning B, Stewart R (1989) Cortical rotation of the Xenopus egg: consequences for the anteroposterior pattern of embryonic dorsal development. Development 107(Suppl):37–51Google Scholar
  118. Gimlich RL, Gerhart JC (1984) Early cellular interactions promote embryonic axis formation in Xenopus laevis. Dev Biol 104:117–130PubMedCrossRefGoogle Scholar
  119. Godsave SF, Isaacs HV, Slack JM (1988) Mesoderm-inducing factors: a small class of molecules. Development 102:555–566PubMedGoogle Scholar
  120. Goette A (1869) Untersuchungen über die Entwickelung des bombinator igneus. Arch Mikrosk Anat 5:90–125CrossRefGoogle Scholar
  121. Goette A (1873) Beiträge zur Entwicklungsgeschichte der Wirbeltiere: I. Der Keim des Forelleneies. Arch Mikrosk Anat 9:679–708CrossRefGoogle Scholar
  122. Gosner K (1960) A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16:183–190Google Scholar
  123. Gould SJ (1977) Ontogeny and phylogeny. Belknap Press of Harvard University Press, Cambridge, MAGoogle Scholar
  124. Gräper L (1929) Die Primitiventwicklung des Hühnchens nach stereokinematographischen Untersuchungen, kontrolliert durch vitale Farbmarkierung und verglichen mit Entwicklung anderer Wirbeltiere. Wilhelm Roux’ Arch Entwicklungsmech Org 116:382–429CrossRefGoogle Scholar
  125. Green JB, New HV, Smith JC (1992) Responses of embryonic Xenopus cells to activin and FGF are separated by multiple dose thresholds and correspond to distinct axes of the mesoderm. Cell 71:731–739Google Scholar
  126. Green JB, Smith JC (1990) Graded changes in dose of a Xenopus activin A homologue elicit stepwise transitions in embryonic cell fate. Nature 347:391–394Google Scholar
  127. Griffin K, Patient R, Holder N (1995) Analysis of FGF function in normal and no tail zebrafish embryos reveals separate mechanisms for formation of the trunk and the tail. Development 121:2983–2994PubMedGoogle Scholar
  128. Gritsman K, Talbot WS, Schier AF (2000) Nodal signaling patterns the organizer. Development 127:921–932PubMedGoogle Scholar
  129. Gritsman K, Zhang J, Cheng S, Heckscher E, Talbot WS, Schier AF (1999) The EGF-CFC protein one-eyed pinhead is essential for nodal signaling. Cell 97:121–132PubMedCrossRefGoogle Scholar
  130. Grunz H (1983) Change in the differentiation pattern of Xenopus laevis ectoderm by variation of the incubation time and concentration of vegetalizing factor. Roux’s Arch Dev Biol 192:130–137Google Scholar
  131. Gu Z, Nomura M, Simpson BB, Lei H, Feijen A, van den Eijnden-van Raaij J, Donahoe PK, Li E (1998) The type I activin receptor ActRIB is required for egg cylinder organization and gastrulation in the mouse. Genes Dev 12:844–857PubMedPubMedCentralCrossRefGoogle Scholar
  132. Gurdon JB, Mitchell A, Mahony D (1995) Direct and continuous assessment by cells of their position in a morphogen gradient. Nature 376:520–521PubMedCrossRefGoogle Scholar
  133. Haeckel E (1874) Memoirs: The Gastraea-theory, the phylogenetic classification of the animal kingdom and the homology of the germ-lamellae. J Cell Sci S2–14:223–247Google Scholar
  134. Hagos EG, Dougan ST (2007) Time-dependent patterning of the mesoderm and endoderm by Nodal signals in zebrafish. BMC Dev Biol 7:22PubMedPubMedCentralCrossRefGoogle Scholar
  135. Hagos EG, Fan X, Dougan ST (2007) The role of maternal Activin-like signals in zebrafish embryos. Dev Biol 309:245–258PubMedCrossRefGoogle Scholar
  136. Haller A, Arnay JR (1758) Sur la formation du coeur dans le poulet. Marc-Mich, Bousquet, LausanneCrossRefGoogle Scholar
  137. Hamburger V (1984) Hilde Mangold, co-discoverer of the organizer. J Hist Biol 17:1–11PubMedCrossRefGoogle Scholar
  138. Hardcastle Z, Chalmers AD, Papalopulu N (2000) FGF-8 stimulates neuronal differentiation through FGFR-4a and interferes with mesoderm induction in Xenopus embryos. Curr Biol 10:1511–1514Google Scholar
  139. Hardin J, Keller R (1988) The behaviour and function of bottle cells during gastrulation of Xenopus laevis. Development 103:211–230Google Scholar
  140. Hardy KM, Yatskievych TA, Konieczka J, Bobbs AS, Antin PB (2011) FGF signalling through RAS/MAPK and PI3K pathways regulates cell movement and gene expression in the chicken primitive streak without affecting E-cadherin expression. BMC Dev Biol 11:20PubMedPubMedCentralCrossRefGoogle Scholar
  141. Harfe BD, Scherz PJ, Nissim S, Tian H, McMahon AP, Tabin CJ (2004) Evidence for an expansion-based temporal Shh gradient in specifying vertebrate digit identities. Cell 118:517–528PubMedCrossRefGoogle Scholar
  142. Harvey SA, Smith JC (2009) Visualisation and quantification of morphogen gradient formation in the zebrafish. PLoS Biol 7:e1000101PubMedPubMedCentralCrossRefGoogle Scholar
  143. Harvey W (1651) Exercitationes de generatione animalium. Quibus accedunt quaedam De partu: De membranis ac humoribus uteri: & De conceptione. Typis Du-Gardianis; impensis Octaviani Pulleyn, LondiniGoogle Scholar
  144. Hatada Y, Stern CD (1994) A fate map of the epiblast of the early chick embryo. Development 120:2879–2889PubMedGoogle Scholar
  145. Hatta K, Takahashi Y (1996) Secondary axis induction by heterospecific organizers in zebrafish. Dev Dyn 205:183–195PubMedCrossRefGoogle Scholar
  146. Heisenberg CP, Nusslein-Volhard C (1997) The function of silberblick in the positioning of the eye anlage in the zebrafish embryo. Dev Biol 184:85–94PubMedCrossRefGoogle Scholar
  147. Helde KA, Grunwald DJ (1993) The DVR-1 (Vg1) transcript of zebrafish is maternally supplied and distributed throughout the embryo. Dev Biol 159:418–426PubMedCrossRefGoogle Scholar
  148. Hemmati-Brivanlou A, Melton DA (1992) A truncated activin receptor inhibits mesoderm induction and formation of axial structures in Xenopus embryos. Nature 359:609–614Google Scholar
  149. Hemmati-Brivanlou A, Wright DA, Melton DA (1992) Embryonic expression and functional analysis of a Xenopus activin receptor. Dev Dyn 194:1–11Google Scholar
  150. Hensen V (1876) Beobachtungen über de Befruchtung und Entwicklung des Kaninchens und Meerschweinchens. Z Anat EntwGesh 1:353Google Scholar
  151. Hill J, Johnston IA (1997) Photomicrographic atlas of Atlantic herring embryonic development. J Fish Biol 51:960–977CrossRefGoogle Scholar
  152. Hirose G, Jacobson M (1979) Clonal organization of the central nervous system of the frog: I. Clones stemming from individual blastomeres of the 16-cell and earlier stages. Dev Biol 71:191–202PubMedCrossRefGoogle Scholar
  153. His W (1878) Untersuchungen über die Bildung des Knochenfischembryo (Salmen). Arch Anat Entwicklungsgeschichte 1878:180–221Google Scholar
  154. Ho RK, Kimmel CB (1993) Commitment of cell fate in the early zebrafish embryo. Science 261:109–111PubMedCrossRefGoogle Scholar
  155. Holtfreter J (1929) Über die Aufzucht isolierter Teile des Amphibienkeimes: I. Methode eine Gewebezuchtung in vivo. Arch Entwmech 117:422–510Google Scholar
  156. Holtfreter J (1933) Die totale Exogastrulation, eine Selbstablösung des Ektoderms vom Entomesoderm. Entwicklung und funktionelles Verhalten nervenloser Organe. Arch Entwmech 129:670–793Google Scholar
  157. Holtfreter J (1938a) Differenzierungspotenzen isolierter Teile der Anurengastrula. Arch Entwmech 138:657–738CrossRefGoogle Scholar
  158. Holtfreter J (1938b) Differenzierungspotenzen isolierter Teile der Urodelengastrula. Arch Entwmech 138:522–656CrossRefGoogle Scholar
  159. Hong SK, Jang MK, Brown JL, McBride AA, Feldman B (2011) Embryonic mesoderm and endoderm induction requires the actions of non-embryonic Nodal-related ligands and Mxtx2. Development 138:787–795PubMedPubMedCentralCrossRefGoogle Scholar
  160. Hubert J (1970) Développement precoce de l'embryon et localization extra-embryonaire des gonocytes chez les reptiles. Arch Anat Microsc Morphol Exp 59:253–270PubMedGoogle Scholar
  161. Hughes RL, Hall LS (1998) Early development and embryology of the platypus. Philos Trans R Soc Lond B Biol Sci 353:1101–1114PubMedPubMedCentralCrossRefGoogle Scholar
  162. Hunt TE (1931) An experimental study of the independent differentiation of the isolated Hensen’s node and its relation to the formation of axial and non-axial parts in the chick embryo. J Exp Zool 59:395–427CrossRefGoogle Scholar
  163. Hurley IA, Mueller RL, Dunn KA, Schmidt EJ, Friedman M, Ho RK, Prince VE, Yang Z, Thomas MG, Coates MI (2007) A new time-scale for ray-finned fish evolution. Proc Biol Sci 274:489–498PubMedCrossRefGoogle Scholar
  164. Huylebroeck D, Van Nimmen K, Waheed A, von Figura K, Marmenout A, Fransen L, De Waele P, Jaspar JM, Franchimont P, Stunnenberg H et al (1990) Expression and processing of the activin-A/erythroid differentiation factor precursor: a member of the transforming growth factor-beta superfamily. Mol Endocrinol 4:1153–1165PubMedCrossRefGoogle Scholar
  165. Hyodo M, Aoki A, Ando C, Katsumata M, Nyui S, Motegi N, Morozumi T, Matsuhashi M (1996) Essential role of the yolk syncytial layer for the development of isolated blastoderms from medaka embryos. Dev Growth Differ 38:383–392CrossRefGoogle Scholar
  166. Inohaya K, Yasumasu S, Yasumasu I, Iuchi I, Yamagami K (1999) Analysis of the origin and development of hatching gland cells by transplantation of the embryonic shield in the fish, Oryzias latipes. Dev Growth Differ 41:557–566PubMedCrossRefGoogle Scholar
  167. Isaacs HV, Tannahill D, Slack JM (1992) Expression of a novel FGF in the Xenopus embryo. A new candidate inducing factor for mesoderm formation and anteroposterior specification. Development 114:711–720PubMedGoogle Scholar
  168. Itoh N, Konishi M (2007) The zebrafish fgf family. Zebrafish 4:179–186PubMedCrossRefGoogle Scholar
  169. Itoh N, Ornitz DM (2004) Evolution of the Fgf and Fgfr gene families. Trends Genet 20:563–569PubMedCrossRefGoogle Scholar
  170. Iwamatsu T (1994) Stages of normal development in the medaka Oryzias latipes. Zool Sci 11:825–839Google Scholar
  171. Izpisua-Belmonte JC, De Robertis EM, Storey KG, Stern CD (1993) The homeobox gene goosecoid and the origin of organizer cells in the early chick blastoderm. Cell 74:645–659PubMedCrossRefGoogle Scholar
  172. Jacobson M, Hirose G (1978) Origin of the retina from both sides of the embryonic brain: a contribution to the problem of crossing at the optic chiasma. Science 202:637–639PubMedCrossRefGoogle Scholar
  173. Jacobson M, Hirose G (1981) Clonal organization of the central nervous system of the frog: II. Clones stemming from individual blastomeres of the 32- and 64-cell stages. J Neurosci 1:271–284PubMedGoogle Scholar
  174. Jones CM, Armes N, Smith JC (1996) Signalling by TGF-beta family members: short-range effects of Xnr-2 and BMP-4 contrast with the long-range effects of activin. Curr Biol 6:1468–1475PubMedCrossRefGoogle Scholar
  175. Jones CM, Kuehn MR, Hogan BL, Smith JC, Wright CV (1995) Nodal-related signals induce axial mesoderm and dorsalize mesoderm during gastrulation. Development 121:3651–3662PubMedGoogle Scholar
  176. Joseph EM, Melton DA (1997) Xnr4: a Xenopus nodal-related gene expressed in the Spemann organizer. Dev Biol 184:367–372Google Scholar
  177. Joseph EM, Melton DA (1998) Mutant Vg1 ligands disrupt endoderm and mesoderm formation in Xenopus embryos. Development 125:2677–2685Google Scholar
  178. Joubin K, Stern CD (1999) Molecular interactions continuously define the organizer during the cell movements of gastrulation. Cell 98:559–571PubMedCrossRefGoogle Scholar
  179. Jovelin R, He X, Amores A, Yan Y-L, Shi R, Qin BY, Roe B, Cresko W, Postlethwait J (2007) Duplication and divergence of fgf8 functions in teleost development and evolution. J Exp Zool (Mol Dev Biol) 308B:730–743CrossRefGoogle Scholar
  180. Kalinka AT, Varga KM, Gerrard DT, Preibisch S, Corcoran DL, Jarrells J, Ohler U, Bergman CM, Tomancak P (2010) Gene expression divergence recapitulates the developmental hourglass model. Nature 468:811–814PubMedCrossRefGoogle Scholar
  181. Kane D, Adams R (2002) Life at the edge: epiboly and involution in the zebrafish. Results Probl Cell Differ 40:117–135PubMedCrossRefGoogle Scholar
  182. Kane DA, Kimmel CB (1993) The zebrafish midblastula transition. Development 119:447–456PubMedGoogle Scholar
  183. Karabagli H, Karabagli P, Ladher RK, Schoenwolf GC (2002) Comparison of the expression patterns of several fibroblast growth factors during chick gastrulation and neurulation. Anat Embryol (Berl) 205:365–370CrossRefGoogle Scholar
  184. Karasaki S (1963) Studies on amphibian yolk: 5. Electron microscopic observations on the utilization of yolk platelets during embryogenesis. J Ultrastruct Res 59:225–247PubMedCrossRefGoogle Scholar
  185. Keezer WS (1965) Spontaneous generation, pre-formation and epigenesis. Bios 36:26–32Google Scholar
  186. Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EH (2008) Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322:1065–1069PubMedCrossRefGoogle Scholar
  187. Keller RE (1975) Vital dye mapping of the gastrula and neurula of Xenopus laevis: I. Prospective areas and morphogenetic movements of the superficial layer. Dev Biol 42:222–241Google Scholar
  188. Keyte AL, Imam T, Smith KK (2007) Limb heterochrony in the marsupial Monodelphis domestica. J Morphol 268:1092Google Scholar
  189. Keyte AL, Smith KK (2010) Developmental origins of precocial forelimbs in marsupial neonates. Development 137:4283–4294PubMedCrossRefGoogle Scholar
  190. Khaner O (1998) The ability to initiate an axis in the avian blastula is concentrated mainly at a posterior site. Dev Biol 194:257–266PubMedCrossRefGoogle Scholar
  191. Khaner O, Eyal-Giladi H (1989) The chick’s marginal zone and primitive streak formation: I. Coordinative effect of induction and inhibition. Dev Biol 134:206–214PubMedCrossRefGoogle Scholar
  192. Kholodenko BN, Bruggeman FJ, Sauro HM (2005) Mechanistic and modular approaches to modeling and inference of cellular regulatory networks. In: Systems biology. Springer. pp 143–159Google Scholar
  193. Kiecker C, Bates T, Bell E (2016) Molecular specification of germ layers in vertebrate embryos. Cell Mol Life Sci 73:923–947PubMedCrossRefGoogle Scholar
  194. Kimelman D (2006) Mesoderm induction: from caps to chips. Nat Rev Genet 7:360–372PubMedCrossRefGoogle Scholar
  195. Kimelman D, Kirschner M (1987) Synergistic induction of mesoderm by FGF and TGF-beta and the identification of an mRNA coding for FGF in the early Xenopus embryo. Cell 51:869–877PubMedCrossRefGoogle Scholar
  196. Kimelman D, Maas A (1992) Induction of dorsal and ventral mesoderm by ectopically expressed Xenopus basic fibroblast growth factor. Development 114:261–269Google Scholar
  197. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310PubMedCrossRefGoogle Scholar
  198. Kimmel CB, Law RD (1985a) Cell lineage of zebrafish blastomeres: II. Formation of the yolk syncytial layer. Dev Biol 108:86–93PubMedCrossRefGoogle Scholar
  199. Kimmel CB, Law RD (1985b) Cell lineage of zebrafish blastomeres: III. Clonal analyses of the blastula and gastrula stages. Dev Biol 108:94–101PubMedCrossRefGoogle Scholar
  200. Kimmel CB, Warga RM, Schilling TF (1990) Origin and organization of the zebrafish fate map. Development 108:581–594PubMedGoogle Scholar
  201. Kimura W, Yasugi S, Stern CD, Fukuda K (2006) Fate and plasticity of the endoderm in the early chick embryo. Dev Biol 289:283–295PubMedCrossRefGoogle Scholar
  202. Kinder SJ, Tsang TE, Wakamiya M, Sasaki H, Behringer RR, Nagy A, Tam PP (2001) The organizer of the mouse gastrula is composed of a dynamic population of progenitor cells for the axial mesoderm. Development 128:3623–3634PubMedGoogle Scholar
  203. Kintner CR, Dodd J (1991) Hensen’s node induces neural tissue in Xenopus ectoderm. Implications for the action of the organizer in neural induction. Development 113:1495–1505Google Scholar
  204. Kofron M, Demel T, Xanthos J, Lohr J, Sun B, Sive H, Osada S, Wright C, Wylie C, Heasman J (1999) Mesoderm induction in Xenopus is a zygotic event regulated by maternal VegT via TGFbeta growth factors. Development 126:5759–5770Google Scholar
  205. Kölliker A (1882) Entwickelung der Keimblätter des Kaninchens. Salzwasser Verlag Gmbh, Paderborn, LeipzigGoogle Scholar
  206. Kondo S, Miura T (2010) Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329:1616–1620PubMedCrossRefGoogle Scholar
  207. Kress A, Selwood L (2006) Marsupial hypoblast: formation and differentiation of the bilaminar blastocyst in Sminthopsis macroura. Cells Tissues Organs 182:155–170PubMedCrossRefGoogle Scholar
  208. Kuratani S, Nobusada Y, Horigome N, Shigetani Y (2001) Embryology of the lamprey and evolution of the vertebrate jaw: insights from molecular and developmental perspectives. Philos Trans R Soc Lond B Biol Sci 356:1615–1632PubMedPubMedCentralCrossRefGoogle Scholar
  209. LaBonne C, Whitman M (1994) Mesoderm induction by activin requires FGF-mediated intracellular signals. Development 120:463–472PubMedGoogle Scholar
  210. Laubenbacher R, Stigler B (2004) A computational algebra approach to the reverse engineering of gene regulatory networks. J Theor Biol 229:523–537PubMedCrossRefGoogle Scholar
  211. Lawson A, Colas JF, Schoenwolf GC (2001) Classification scheme for genes expressed during formation and progression of the avian primitive streak. Anat Rec 262:221–226PubMedCrossRefGoogle Scholar
  212. Lawson A, Schoenwolf GC (2001) Cell populations and morphogenetic movements underlying formation of the avian primitive streak and organizer. Genesis 29:188–195PubMedCrossRefGoogle Scholar
  213. Lawson A, Schoenwolf GC (2003) Epiblast and primitive-streak origins of the endoderm in the gastrulating chick embryo. Development 130:3491–3501PubMedCrossRefGoogle Scholar
  214. Lawson KA, Meneses JJ, Pedersen RA (1991) Clonal analysis of epiblast fate during germ layer formation in the mouse embryo. Development 113:891–911PubMedGoogle Scholar
  215. Le Douarin N (1969) Particularités du noyau interphasique chez la Caille japonaise (Coturnix coturnix japonica). Utilisation de ces particularités comme “marquage biologique” dans des recherches sur les interactions tissulaires et les migrations cellulaires au cours de l'ontogenése. Bull Biol Fr Belg 103:435–452PubMedGoogle Scholar
  216. Le Douarin N (1973) A biological cell labeling technique and its use in experimental embryology. Dev Biol 30:217–222PubMedCrossRefGoogle Scholar
  217. Lee HO, Choe H, Seo K, Lee H, Lee J, Kim J (2010) Fgfbp1 is essential for the cellular survival during zebrafish embryogenesis. Mol Cells 29:501–507PubMedCrossRefGoogle Scholar
  218. Leikola A (1976) Hensen’s node—the “Organizer” of the amniote embryo. Experientia 32:269–277PubMedCrossRefGoogle Scholar
  219. Levayer R, Lecuit T (2008) Breaking down EMT. Nat Cell Biol 10:757–759PubMedCrossRefGoogle Scholar
  220. Levin M, Johnson RL, Stern CD, Kuehn M, Tabin C (1995) A molecular pathway determining left-right asymmetry in chick embryogenesis. Cell 82:803–814PubMedCrossRefGoogle Scholar
  221. Li X, Ma Y, Li D, Gao X, Li P, Bai N, Luo M, Tan X, Lu C, Ma X (2012) Arsenic impairs embryo development via down-regulating Dvr1 expression in zebrafish. Toxicol Lett 212:161–168PubMedCrossRefGoogle Scholar
  222. Liguori GL, Borges AC, D'Andrea D, Liguoro A, Goncalves L, Salgueiro AM, Persico MG, Belo JA (2008) Cripto-independent Nodal signaling promotes positioning of the A-P axis in the early mouse embryo. Dev Biol 315:280–289PubMedCrossRefGoogle Scholar
  223. Lombardo A, Isaacs HV, Slack JM (1998) Expression and functions of FGF-3 in Xenopus development. Int J Dev Biol 42:1101–1107PubMedGoogle Scholar
  224. Long S, Ahmad N, Rebagliati M (2003) The zebrafish nodal-related gene southpaw is required for visceral and diencephalic left-right asymmetry. Development 130:2303–2316PubMedCrossRefGoogle Scholar
  225. Long W (1983) The role of the yolk syncytial layer in determination of the plane of bilateral symmetry in the rainbow trout, Salmo gairdneri Richardson. J Exp Zool 228:91–97Google Scholar
  226. Long WL, Ballard WW (2001) Normal embryonic stages of the longnose gar, Lepisosteus osseus. BMC Dev Biol 1:6Google Scholar
  227. Luther W (1935) Entwicklungsphysiologie Untersuchungen am Forellenkeim: Die Rolle des Organisationszentrums bei der Entstehung der Embryonalanlage. Biol Zbl 55:114–137Google Scholar
  228. Luther W (1936) Austausch von präsumptiver Epidermis und Medullarplatte beim Forellenkeim. Arch Entwmech Org 135:384–388CrossRefGoogle Scholar
  229. Malchow H, Petrovskii SV, Venturino E (2008) Spatiotemporal patterns in ecology and epidemiology: theory, models, and simulation. Chapman & Hall/CRC Press, LondonGoogle Scholar
  230. Manejwala FM, Cragoe EJ Jr, Schultz RM (1989) Blastocoel expansion in the preimplantation mouse embryo: role of extracellular sodium and chloride and possible apical routes of their entry. Dev Biol 133:210–220PubMedCrossRefGoogle Scholar
  231. Mariani FV (2010) Proximal to distal patterning during limb development and regeneration: a review of converging disciplines. Regen Med 5:451–462PubMedCrossRefGoogle Scholar
  232. Markstein M, Levine M (2002) Decoding cis-regulatory DNAs in the Drosophila genome. Curr Opin Genet Dev 12:601–606Google Scholar
  233. Markstein M, Markstein P, Markstein V, Levine MS (2002) Genome-wide analysis of clustered Dorsal binding sites identifies putative target genes in the Drosophila embryo. Proc Natl Acad Sci U S A 99:763–768Google Scholar
  234. Massague J (1992) Receptors for the TGF-beta family. Cell 69:1067–1070PubMedCrossRefGoogle Scholar
  235. Massague J, Seoane J, Wotton D (2005) Smad transcription factors. Genes Dev 19:2783–2810PubMedCrossRefGoogle Scholar
  236. Mate KE, Robinson ES, Vandeberg JL, Pedersen RA (1994) Timetable of in vivo embryonic development in the grey short-tailed opossum (Monodelphis domestica). Mol Reprod Dev 39:365–374Google Scholar
  237. Mathieu J, Griffin K, Herbomel P, Dickmeis T, Strahle U, Kimelman D, Rosa FM, Peyrieras N (2004) Nodal and Fgf pathways interact through a positive regulatory loop and synergize to maintain mesodermal cell populations. Development 131:629–641PubMedCrossRefGoogle Scholar
  238. Matzuk MM, Kumar TR, Vassalli A, Bickenbach JR, Roop DR, Jaenisch R, Bradley A (1995) Functional analysis of activins during mammalian development. Nature 374:354–356PubMedCrossRefGoogle Scholar
  239. May C (2013) Turtle embryos. In: Devo ASU Blog: Dev Bio, Evo Devo and Science in general. http://devoasu.blogspot/2013/06turtles.html
  240. Melby AE, Warga RM, Kimmel CB (1996) Specification of cell fates at the dorsal margin of the zebrafish gastrula. Development 122:2225–2237PubMedGoogle Scholar
  241. Meno C, Gritsman K, Ohishi S, Ohfuji Y, Heckscher E, Mochida K, Shimono A, Kondoh H, Talbot WS, Robertson EJ et al (1999) Mouse Lefty2 and zebrafish antivin are feedback inhibitors of nodal signaling during vertebrate gastrulation. Mol Cell 4:287–298PubMedCrossRefGoogle Scholar
  242. Meno C, Takeuchi J, Sakuma R, Koshiba-Takeuchi K, Ohishi S, Saijoh Y, Miyazaki J, ten Dijke P, Ogura T, Hamada H (2001) Diffusion of nodal signaling activity in the absence of the feedback inhibitor Lefty2. Dev Cell 1:127–138PubMedCrossRefGoogle Scholar
  243. Meyer AW (1932) Essays on the history of embryology: Part VI. Cal West Med 36:341–343PubMedPubMedCentralGoogle Scholar
  244. Meyers EN, Lewandoski M, Martin GR (1998) An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination. Nat Genet 18:136–141PubMedCrossRefGoogle Scholar
  245. Mitrani E, Gruenbaum Y, Shohat H, Ziv T (1990a) Fibroblast growth factor during mesoderm induction in the early chick embryo. Development 109:387–393PubMedGoogle Scholar
  246. Mitrani E, Ziv T, Thomsen G, Shimoni Y, Melton DA, Bril A (1990b) Activin can induce the formation of axial structures and is expressed in the hypoblast of the chick. Cell 63:495–501PubMedCrossRefGoogle Scholar
  247. Mizoguchi T, Izawa T, Kuroiwa A, Kikuchi Y (2006) Fgf signaling negatively regulates Nodal-dependent endoderm induction in zebrafish. Dev Biol 300:612–622PubMedCrossRefGoogle Scholar
  248. Mizuno T, Yamaha E, Wakahara M, Kuroiwa A, Takeda H (1996) Mesoderm induction in zebrafish. Nature 383:131–132CrossRefGoogle Scholar
  249. Moody SA (1987a) Fates of the blastomeres of the 16-cell stage Xenopus embryo. Dev Biol 119:560–578Google Scholar
  250. Moody SA (1987b) Fates of the blastomeres of the 32-cell-stage Xenopus embryo. Dev Biol 122:300–319Google Scholar
  251. Morgan TH (1893) Experimental studies on teleost eggs. Anat Anz 8:803–814Google Scholar
  252. Morgan TH (1895) The formation of the fish embryo. J Morphol 10:419–472CrossRefGoogle Scholar
  253. Morrill GA, Kostellow AB, Murphy JB (1974) Role of Na+, K + -ATPase in early embryonic development. Ann N Y Acad Sci 242:543–559PubMedCrossRefGoogle Scholar
  254. Muller P, Rogers KW, Jordan BM, Lee JS, Robson D, Ramanathan S, Schier AF (2012) Differential diffusivity of Nodal and Lefty underlies a reaction-diffusion patterning system. Science 336:721–724PubMedPubMedCentralCrossRefGoogle Scholar
  255. Nagai H, Sezaki M, Kakiguchi K, Nakaya Y, Lee HC, Ladher R, Sasanami T, Han JY, Yonemura S, Sheng G (2015) Cellular analysis of cleavage-stage chick embryos reveals hidden conservation in vertebrate early development. Development 142:1279–1286PubMedPubMedCentralCrossRefGoogle Scholar
  256. Nakamura O (1938) Tail formation in the urodele. Zool Mag (Tokyo) 50:442–446Google Scholar
  257. Nakamura O (1942) Die Entwicklung der hinteren Körperhälfte bei Urodelen. Annot Zool Jap 21:169–238Google Scholar
  258. Nakamura O, Takasaki H, Ishihara M (1970) Formation of the organizer from combinations of presumptive ectoderm and endoderm: I. Proc Jpn Acad 47:313–318Google Scholar
  259. Nieuwkoop PD (1969) The formation of mesoderm in urodelean amphibians. Wilhelm Roux’ Arch 162:341–373CrossRefGoogle Scholar
  260. Niswander L, Martin GR (1992) Fgf-4 expression during gastrulation, myogenesis, limb and tooth development in the mouse. Development 114:755–768PubMedGoogle Scholar
  261. Norris DP, Brennan J, Bikoff EK, Robertson EJ (2002) The Foxh1-dependent autoregulatory enhancer controls the level of Nodal signals in the mouse embryo. Development 129:3455–3468PubMedGoogle Scholar
  262. Nutt SL, Dingwell KS, Holt CE, Amaya E (2001) Xenopus Sprouty2 inhibits FGF-mediated gastrulation movements but does not affect mesoderm induction and patterning. Genes Dev 15:1152–1166Google Scholar
  263. Ober EA, Schulte-Merker S (1999) Signals from the yolk cell induce mesoderm, neuroectoderm, the trunk organizer, and the notochord in zebrafish. Dev Biol 215:167–181PubMedCrossRefGoogle Scholar
  264. Oppenheimer JM (1934a) Experimental studies on the developing perch (Perca flavscens Mitchill). Proc Soc Exp Biol N Y 31:1123–1124Google Scholar
  265. Oppenheimer JM (1934b) Experiments on early developing stages of Fundulus. Proc Natl Acad Sci U S A 20:536–538Google Scholar
  266. Oppenheimer JM (1935) Processes of localization in developing Fundulus. Proc Natl Acad Sci U S A 21:551–553Google Scholar
  267. Oppenheimer JM (1936a) The development of isolated blastoderms of Fundulus heteroclitus. J Exp Zool 72:247–269CrossRefGoogle Scholar
  268. Oppenheimer JM (1936b) Structures developed in amphibians by implantation of living fish organizer. Proc Soc Exp Biol N Y 34:461–463CrossRefGoogle Scholar
  269. Oppenheimer JM (1936c) Transplantation experiments on developing teleosts (Fundulus and Perca). J Exp Zool 72:409–437CrossRefGoogle Scholar
  270. Oppenheimer JM (1940) The non-specificity of the germ-layers. Q Rev Biol 15:98–124CrossRefGoogle Scholar
  271. Oppenheimer JM (1947) Organization of the teleost blastoderm. Q Rev Biol 22:105–118PubMedCrossRefGoogle Scholar
  272. Oppenheimer JM (1959) Extraembryonic transplantation of fragmented shield grafts in Fundulus. J Exp Zool 142:441–459PubMedCrossRefGoogle Scholar
  273. Osada SI, Saijoh Y, Frisch A, Yeo CY, Adachi H, Watanabe M, Whitman M, Hamada H, Wright CV (2000) Activin/nodal responsiveness and asymmetric expression of a Xenopus nodal-related gene converge on a FAST-regulated module in intron 1. Development 127:2503–2514PubMedGoogle Scholar
  274. Osada SI, Wright CV (1999) Xenopus nodal-related signaling is essential for mesendodermal patterning during early embryogenesis. Development 126:3229–3240Google Scholar
  275. Pander CH (1817a) Beiträge zur Entwickelungsgeschichte des Hühnchens im Eye. Bayerische Julius-Maximilians-Universität Würzburg, WurzburgGoogle Scholar
  276. Pander CH (1817b) Dissertatio inauguralis sistens historiam metamorphoseos, quam ovum incubatum prioribus quinque diebus subit. Julius-Maximilians-Universität Würzburg, Wirceburgi, p 69, 61pGoogle Scholar
  277. Pasteels JJ (1936) Études sur la gastrulation des vertébrés méroblastiques: I. Téléostéens. Arch Biol (Liege) 47:205–308Google Scholar
  278. Pasteels JJ (1937) Etude sur la gastrulation des vértébres méroblastiques: II. Reptiles. Arch Biol (Liege) 48:105–184Google Scholar
  279. Pasteels JJ (1942) New observations concerning the maps of presumptive areas of the young amphibian gastrula (Ambystoma and Discoglossus). J Exp Zool 89:255–281CrossRefGoogle Scholar
  280. Pasteels JL (1957) La formation de l'endophylle et de l'endoblast vitellin chez les reptiles, chéloniens et lacertiliens. Acta Anat 30:601–612PubMedCrossRefGoogle Scholar
  281. Pasteels JL (1970) Développment embryonnaire. Masson, Paris, FranceGoogle Scholar
  282. Perry M, Kinoshita M, Saldi G, Huo L, Arikawa K, Desplan C (2016) Molecular logic behind the three-way stochastic choices that expand butterfly colour vision. Nature 535:280–284PubMedPubMedCentralCrossRefGoogle Scholar
  283. Phillips BT, Bolding K, Riley BB (2001) Zebrafish fgf3 and fgf8 encode redundant functions required for otic placode induction. Dev Biol 235:351–365PubMedCrossRefGoogle Scholar
  284. Piavis GW (1961) Embryological stages in the sea lamprey and effects of temperature on development. Fisheries 55:111–143Google Scholar
  285. Piccolo S, Agius E, Leyns L, Bhattacharyya S, Grunz H, Bouwmeester T, De Robertis EM (1999) The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature 397:707–710PubMedPubMedCentralCrossRefGoogle Scholar
  286. Piccolo S, Sasai Y, Lu B, De Robertis EM (1996) Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 86:589–598PubMedPubMedCentralCrossRefGoogle Scholar
  287. Piepenburg O, Grimmer D, Williams PH, Smith JC (2004) Activin redux: specification of mesodermal pattern in Xenopus by graded concentrations of endogenous activin B. Development 131:4977–4986PubMedCrossRefGoogle Scholar
  288. Pierce GB, Arechaga J, Muro C, Wells RS (1988) Differentiation of ICM cells into trophectoderm. Am J Pathol 132:356–364PubMedPubMedCentralGoogle Scholar
  289. Postlethwait JH, Woods IG, Ngo-Hazelett P, Yan YL, Kelly PD, Chu F, Huang H, Hill-Force A, Talbot WS (2000) Zebrafish comparative genomics and the origins of vertebrate chromosomes. Genome Res 10:1890–1902PubMedCrossRefGoogle Scholar
  290. Prud'homme B, Gompel N (2010) Evolutionary biology: genomic hourglass. Nature 468:768–769PubMedCrossRefGoogle Scholar
  291. Psychoyos D, Stern CD (1996) Restoration of the organizer after radical ablation of Hensen’s node and the anterior primitive streak in the chick embryo. Development 122:3263–3273PubMedGoogle Scholar
  292. Purcell SM, Keller R (1993) A different type of amphibian mesoderm morphogenesis in Ceratophrys ornata. Development 117:307–317Google Scholar
  293. Qian H, Murray JD (2001) A simple method of parameter space determination for diffusion-driven instability with three species. Appl Math Lett 14:405–411CrossRefGoogle Scholar
  294. Ramis JM, Collart C, Smith JC (2007) Xnrs and activin regulate distinct genes during Xenopus development: activin regulates cell division. PLoS One 2:e213PubMedPubMedCentralCrossRefGoogle Scholar
  295. Rankin CT, Bunton T, Lawler AM, Lee SJ (2000) Regulation of left-right patterning in mice by growth/differentiation factor-1. Nat Genet 24:262–265PubMedCrossRefGoogle Scholar
  296. Rebagliati MR, Toyama R, Fricke C, Haffter P, Dawid IB (1998a) Zebrafish nodal-related genes are implicated in axial patterning and establishing left-right asymmetry. Dev Biol 199:261–272PubMedCrossRefGoogle Scholar
  297. Rebagliati MR, Toyama R, Haffter P, Dawid IB (1998b) cyclops encodes a nodal-related factor involved in midline signaling. Proc Natl Acad Sci U S A 95:9932–9937Google Scholar
  298. Rebagliati MR, Weeks DL, Harvey RP, Melton DA (1985) Identification and cloning of localized maternal RNAs from Xenopus eggs. Cell 42:769–777PubMedCrossRefGoogle Scholar
  299. Reifers F, Bohli H, Walsh EC, Crossley PH, Stainier DY, Brand M (1998) Fgf8 is mutated in zebrafish acerebellar (ace) mutants and is required for maintenance of midbrain-hindbrain boundary development and somitogenesis. Development 125:2381–2395PubMedGoogle Scholar
  300. Reineck (1869) Über die Schichtung des Forellenkeims. Arch Mikr Anat 5:356–366CrossRefGoogle Scholar
  301. Richards RJ (2009) Haeckel’s embryos: fraud not proven. Biol Philos 24:147–154CrossRefGoogle Scholar
  302. Richardson MK, Admiraal J, Wright GM (2010) Developmental anatomy of lampreys. Biol Rev Camb Philos Soc 85:1–33PubMedCrossRefGoogle Scholar
  303. Richardson MK, Hanken J, Gooneratne ML, Pieau C, Raynaud A, Selwood L, Wright GM (1997) There is no highly conserved embryonic stage in the vertebrates: implications for current theories of evolution and development. Anat Embryol (Berl) 196:91–106CrossRefGoogle Scholar
  304. Robertson EJ (2014) Dose-dependent Nodal/Smad signals pattern the early mouse embryo. Semin Cell Dev Biol 32:73–79PubMedCrossRefGoogle Scholar
  305. Rodaway A, Takeda H, Koshida S, Broadbent J, Price B, Smith JC, Patient R, Holder N (1999) Induction of the mesendoderm in the zebrafish germ ring by yolk cell- derived TGF-beta family signals and discrimination of mesoderm and endoderm by FGF. Development 126:3067–3078PubMedGoogle Scholar
  306. Roe SA (1975) The development of Albrecht Von Haller’s views on embryology. J Hist Biol 8:167–190PubMedCrossRefGoogle Scholar
  307. Roe SA (1981) The natural philosophy of Albrecht von Haller. Arno Press, New YorkGoogle Scholar
  308. Rosa F, Roberts AB, Danielpour D, Dart LL, Sporn MB, Dawid IB (1988) Mesoderm induction in amphibians: the role of TGF-beta 2-like factors. Science 239:783–785PubMedCrossRefGoogle Scholar
  309. Rudnick D (1935) Regional restriction of potencies in the chick during embryogenesis. J Exp Zool 71:83–99CrossRefGoogle Scholar
  310. Ryder JA (1884) A contribution to the embryography of osseus fishes: with special reference to the development of the cod (Gadus Morrhua). US Government Printing Office 71Google Scholar
  311. Sagerstrom CG, Grinbalt Y, Sive H (1996) Anteroposterior patterning in the zebrafish, Danio rerio: an explant assay reveals inductive and suppressive cell interactions. Development 122:1873–1883Google Scholar
  312. Saijoh Y, Adachi H, Sakuma R, Yeo CY, Yashiro K, Watanabe M, Hashiguchi H, Mochida K, Ohishi S, Kawabata M et al (2000) Left-right asymmetric expression of lefty2 and nodal is induced by a signaling pathway that includes the transcription factor FAST2. Mol Cell 5:35–47PubMedCrossRefGoogle Scholar
  313. Sakuma R, Ohnishi Yi Y, Meno C, Fujii H, Juan H, Takeuchi J, Ogura T, Li E, Miyazono K, Hamada H (2002) Inhibition of Nodal signalling by Lefty mediated through interaction with common receptors and efficient diffusion. Genes Cells 7:401–412PubMedCrossRefGoogle Scholar
  314. Sampath K, Rubinstein AL, Cheng AM, Liang JO, Fekany K, Solnica-Krezel L, Korzh V, Halpern ME, Wright CV (1998) Induction of the zebrafish ventral brain and floorplate requires cyclops/nodal signalling. Nature 395:185–189PubMedCrossRefGoogle Scholar
  315. Sasai Y, Lu B, Steinbeisser H, Geissert D, Gont LK, De Robertis EM (1994) Xenopus chordin: a novel dorsalizing factor activated by organizer- specific homeobox genes. Cell 79:779–790PubMedPubMedCentralCrossRefGoogle Scholar
  316. Saunders JW Jr (1948) The proximo-distal sequence of origin of the parts of the chick wing and the role of the ectoderm. J Exp Zool 108:363–403PubMedCrossRefGoogle Scholar
  317. Savage C, Das P, Finelli AL, Townsend SR, Sun CY, Baird SE, Padgett RW (1996) Caenorhabditis elegans genes sma-2, sma-3, and sma-4 define a conserved family of transforming growth factor beta pathway components. Proc Natl Acad Sci U S A 93:790–794Google Scholar
  318. Saxen L, Toivonen S, Vainio T (1964) Initial stimulus and subsequent interactions in embryonic induction. J Embryol Exp Morphol 12:333–338PubMedGoogle Scholar
  319. Schmitt S (2005) From eggs to fossils: epigenesis and transformation of species in Pander’s biology. Int J Dev Biol 49:1–8PubMedCrossRefGoogle Scholar
  320. Schulte-Merker S, Ho RK, Herrmann BG, Nusslein-Volhard C (1992) The protein product of the zebrafish homologue of the mouse T gene is expressed in nuclei of the germ ring and the notochord of the early embryo. Development 116:1021–1032PubMedGoogle Scholar
  321. Schulte-Merker S, Lee KJ, McMahon AP, Hammerschmidt M (1997) The zebrafish organizer requires chordino. Nature 387:862–863PubMedCrossRefGoogle Scholar
  322. Schulte-Merker S, Smith JC, Dale L (1994) Effects of truncated activin and FGF receptors and of follistatin on the inducing activities of BVg1 and activin: does activin play a role in mesoderm induction? EMBO J 13:3533–3541PubMedPubMedCentralGoogle Scholar
  323. Sedgwick AG (1894) On the law of development commonly known as von Baer’s law; and on the significance of ancestral rudiments in embryonic development. Q J Microsc Sci 36:35–52Google Scholar
  324. Sekelsky JJ, Newfeld SJ, Raftery LA, Chartoff EH, Gelbart WM (1995) Genetic characterization and cloning of mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster. Genetics 139:1347–1358Google Scholar
  325. Seleiro EA, Connolly DJ, Cooke J (1996) Early developmental expression and experimental axis determination by the chicken Vg1 gene. Curr Biol 6:1476–1486PubMedCrossRefGoogle Scholar
  326. Selwood L (1986) Cleavage in vitro following destruction of some blastomeres in the marsupial Antechinus stuartii (Macleay). J Embryol Exp Morphol 92:71–84Google Scholar
  327. Selwood L (1992) Mechanisms underlying the development of pattern in marsupial embryos. Curr Top Dev Biol 27:175–233PubMedCrossRefGoogle Scholar
  328. Selwood L (1994) Development of early cell lineages in marsupial embryos: an overview. Reprod Fertil Dev 6:507–527PubMedCrossRefGoogle Scholar
  329. Selwood L, Johnson MH (2006) Trophoblast and hypoblast in the monotreme, marsupial and eutherian mammal: evolution and origins. Bioessays 28:128–145PubMedCrossRefGoogle Scholar
  330. Selwood L, Robinson ES, Pedersen RA, Vandeberg JL (1997) Development in vitro of Marsupials: a comparative review of species and a timetable of cleavage and early blastocyst stages of development in Monodelphis domestica. Int J Dev Biol 41:397–410Google Scholar
  331. Shah SB, Skromne I, Hume CR, Kessler DS, Lee KJ, Stern CD, Dodd J (1997) Misexpression of chick Vg1 in the marginal zone induces primitive streak formation. Development 124:5127–5138PubMedGoogle Scholar
  332. Shamim H, Mason I (1999) Expression of Fgf4 during early development of the chick embryo. Mech Dev 85:189–192PubMedCrossRefGoogle Scholar
  333. Sheng G (2015) Epiblast morphogenesis before gastrulation. Dev Biol 401:17–24PubMedCrossRefGoogle Scholar
  334. Shih J, Fraser SE (1995) Distribution of tissue progenitors within the shield region of the zebrafish gastrula. Development 121:2755–2765PubMedGoogle Scholar
  335. Shih J, Fraser SE (1996) Characterizing the zebrafish organizer: microsurgical analysis at the early-shield stage. Development 122:1313–1322PubMedGoogle Scholar
  336. Shimada A, Yabusaki M, Niwa H, Yokoi H, Hatta K, Kobayashi D, Takeda H (2008) Maternal-zygotic medaka mutants for fgfr1 reveal its essential role in the migration of the axial mesoderm but not the lateral mesoderm. Development 135:281–290PubMedCrossRefGoogle Scholar
  337. Shook DR, Majer C, Keller R (2002) Urodeles remove mesoderm from the superficial layer by subduction through a bilateral primitive streak. Dev Biol 248:220–239PubMedCrossRefGoogle Scholar
  338. Skromne I, Stern CD (2002) A hierarchy of gene expression accompanying induction of the primitive streak by Vg1 in the chick embryo. Mech Dev 114:115–118PubMedCrossRefGoogle Scholar
  339. Slack JM, Darlington BG, Heath JK, Godsave SF (1987) Mesoderm induction in early Xenopus embryos by heparin-binding growth factors. Nature 326:197–200PubMedCrossRefGoogle Scholar
  340. Slack JM, Forman D (1980) An interaction between dorsal and ventral regions of the marginal zone in early amphibian embryos. J Embryol Exp Morphol 56:283–299PubMedGoogle Scholar
  341. Slack JM, Holland PW, Graham CF (1993) The zootype and the phylotypic stage. Nature 361:490–492PubMedCrossRefGoogle Scholar
  342. Smith JC (1987) A mesoderm-inducing factor is produced by Xenopus cell line. Development 99:3–14Google Scholar
  343. Smith JC, Malacinski GM (1983) The origin of the mesoderm in an anuran, Xenopus laevis, and a urodele, Ambystoma mexicanum. Dev Biol 98:250–254PubMedCrossRefGoogle Scholar
  344. Smith JC, Price BM, Van Nimmen K, Huylebroeck D (1990) Identification of a potent Xenopus mesoderm-inducing factor as a homologue of activin A. Nature 345:729–731Google Scholar
  345. Smith JC, Slack JM (1983) Dorsalization and neural induction: properties of the organizer in Xenopus laevis. J Embryol Exp Morphol 78:299–317Google Scholar
  346. Smith JC, Yaqoob M, Symes K (1988) Purification, partial characterization and biological effects of the XTC mesoderm-inducing factor. Development 103:591–600PubMedGoogle Scholar
  347. Smith KK (2001) Heterochrony revisited: the evolution of developmental sequences. Biol J Linn Soc 73:169–186CrossRefGoogle Scholar
  348. Smith WC, Harland RM (1992) Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell 70:829–840Google Scholar
  349. Smith WC, McKendry R, Ribisi S Jr, Harland RM (1995) A nodal-related gene defines a physical and functional domain within the Spemann organizer. Cell 82:37–46Google Scholar
  350. Snow MH, Bennett D (1978) Gastrulation in the mouse: assessment of cell populations in the epiblast of tw18/tw18 embryos. J Embryol Exp Morphol 47:39–52PubMedGoogle Scholar
  351. Snow MHL (1977) Gastrulation in the mouse: growth and regionalization of the epiblast. J Embryol Exp Morphol 42:293–303Google Scholar
  352. Solnica-Krezel L (2003) Vertebrate development: taming the nodal waves. Curr Biol 13:R7–R9PubMedCrossRefGoogle Scholar
  353. Solnica-Krezel L (2005) Conserved patterns of cell movements during vertebrate gastrulation. Curr Biol 15:R213–R228PubMedCrossRefGoogle Scholar
  354. Sorre B, Warmflash A, Brivanlou AH, Siggia ED (2014) Encoding of temporal signals by the TGF-beta pathway and implications for embryonic patterning. Dev Cell 30:334–342PubMedPubMedCentralCrossRefGoogle Scholar
  355. Spemann H, Mangold H (1924) Über die Induktion von Embryonalanalgen durch Implantation artfremder Organisatoren. Wilhelm Roux’ Arch Entwicklungsmech 100:599–638Google Scholar
  356. Stern CD, Yu RT, Kakizuka A, Kintner CR, Mathews LS, Vale WW, Evans RM, Umesono K (1995) Activin and its receptors during gastrulation and the later phases of mesoderm development in the chick embryo. Dev Biol 172:192–205PubMedCrossRefGoogle Scholar
  357. Storey KG, Crossley JM, De Robertis EM, Norris WE, Stern CD (1992) Neural induction and regionalisation in the chick embryo. Development 114:729–741PubMedGoogle Scholar
  358. Stower MJ, Diaz RE, Fernandez LC, Crother MW, Crother B, Marco A, Trainor PA, Srinivas S, Bertocchini F (2015) Bi-modal strategy of gastrulation in reptiles. Dev Dyn [Epub ahead of print]Google Scholar
  359. Streit A, Lee KJ, Woo I, Roberts C, Jessell TM, Stern CD (1998) Chordin regulates primitive streak development and the stability of induced neural cells, but is not sufficient for neural induction in the chick embryo. Development 125:507–519PubMedGoogle Scholar
  360. Stricker S (1865) Untersucheungen über die Entwicklung der Bachforelle. Sitzungberichte der Wiener k Akad d Wiss LIGoogle Scholar
  361. Sun BI, Bush SM, Collins-Racie LA, LaVallie ER, DiBlasio-Smith EA, Wolfman NM, McCoy JM, Sive HL (1999a) derriere: a TGF-beta family member required for posterior development in Xenopus. Development 126:1467–1482Google Scholar
  362. Sun X, Meyers EN, Lewandoski M, Martin GR (1999b) Targeted disruption of Fgf8 causes failure of cell migration in the gastrulating mouse embryo. Genes Dev 13:1834–1846PubMedPubMedCentralCrossRefGoogle Scholar
  363. Sun Y, Tseng WC, Fan X, Ball R, Dougan ST (2014) Extraembryonic signals under the control of MGA, Max, and Smad4 are required for dorsoventral patterning. Dev Cell 28:322–334PubMedCrossRefGoogle Scholar
  364. Takahashi S, Yokota C, Takano K, Tanegashima K, Onuma Y, Goto J, Asashima M (2000) Two novel nodal-related genes initiate early inductive events in Xenopus Nieuwkoop center. Development 127:5319–5329Google Scholar
  365. Takata C, Yamada T (1960) Endodermal tissues developed from the isolated newt ectoderm under the influence of guinea pig bone marrow. Embryologia 5:8–20CrossRefGoogle Scholar
  366. Takeuchi M, Okabe M, Aizawa S (2009a) The genus Polypterus (bichirs): a fish group diverged at the stem of ray-finned fishes (Actinopterygii). Cold Spring Harb Protoc 2009: pdb emo117Google Scholar
  367. Takeuchi M, Takahashi M, Okabe M, Aizawa S (2009b) Germ layer patterning in bichir and lamprey; an insight into its evolution in vertebrates. Dev Biol 332:90–102PubMedCrossRefGoogle Scholar
  368. Tam PP (1989) Regionalisation of the mouse embryonic ectoderm: allocation of prospective ectodermal tissues during gastrulation. Development 107:55–67PubMedGoogle Scholar
  369. Tam PP, Beddington RS (1987) The formation of mesodermal tissues in the mouse embryo during gastrulation and early organogenesis. Development 99:109–126PubMedGoogle Scholar
  370. Tan Q, Balofsky A, Weisz K, Peng C (2009a) Role of activin, transforming growth factor-beta and bone morphogenetic protein 15 in regulating zebrafish oocyte maturation. Comp Biochem Physiol A Mol Integr Physiol 153:18–23PubMedCrossRefGoogle Scholar
  371. Tan Q, Zagrodny A, Bernaudo S, Peng C (2009b) Regulation of membrane progestin receptors in the zebrafish ovary by gonadotropin, activin, TGF-beta and BMP-15. Mol Cell Endocrinol 312:72–79PubMedCrossRefGoogle Scholar
  372. Tannahill D, Isaacs HV, Close MJ, Peters G, Slack JM (1992) Developmental expression of the Xenopus int-2 (FGF-3) gene: activation by mesodermal and neural induction. Development 115:695–702PubMedGoogle Scholar
  373. Thisse B, Wright CV, Thisse C (2000) Activin- and Nodal-related factors control antero-posterior patterning of the zebrafish embryo. Nature 403:425–428PubMedCrossRefGoogle Scholar
  374. Thisse C, Thisse B (1999) Antivin, a novel and divergent member of the TGFbeta superfamily, negatively regulates mesoderm induction. Development 126:229–240PubMedGoogle Scholar
  375. Thisse C, Thisse B, Halpern ME, Postlethwait JH (1994) Goosecoid expression in neurectoderm and mesendoderm is disrupted in zebrafish cyclops gastrulas. Dev Biol 164:420–429PubMedCrossRefGoogle Scholar
  376. Thomsen G, Woolf T, Whitman M, Sokol S, Vaughan J, Vale W, Melton DA (1990) Activins are expressed early in Xenopus embryogenesis and can induce axial mesoderm and anterior structures. Cell 63:485–493Google Scholar
  377. Thomsen GH, Melton DA (1993) Processed Vg1 protein is an axial mesoderm inducer in Xenopus. Cell 74:433–441Google Scholar
  378. Tiedemann H, Lottspeich F, Davids M, Knochel S, Hoppe P, Tiedemann H (1992) The vegetalizing factor. A member of the evolutionarily highly conserved activin family. FEBS Lett 300:123–126PubMedCrossRefGoogle Scholar
  379. Tiedemann H, Tiedemann H (1959) Experiments on the extraction of a mesodermal inductor from chick embryo. Hoppe Seylers Z Physiol Chem 314:156–176PubMedCrossRefGoogle Scholar
  380. Toivonen S (1953) Bone-marrow of the guinea-pig as a mesoderm inductor in implantation experiments with embryos of triturus. J Embryol Exp Morphol 1:97–104Google Scholar
  381. Toyama R, O'Connell ML, Wright CV, Kuehn MR, Dawid IB (1995) Nodal induces ectopic goosecoid and lim1 expression and axis duplication in zebrafish. Development 121:383–391PubMedGoogle Scholar
  382. Toyoizumi R, Ogasawara T, Takeuchi S, Mogi K (2005) Xenopus nodal related-1 is indispensable only for left-right axis determination. Int J Dev Biol 49:923–938Google Scholar
  383. Trinkaus JP (1973) Surface activity and locomotion of Fundulus deep cells during blastula and gastrula stages. Dev Biol 30:69–103Google Scholar
  384. Trinkaus JP (1984) Cells into organs. The forces that shape the embryo. Prentice-Hall, Englewood Cliffs, NJGoogle Scholar
  385. Trinkaus JP (1996) Ingression during early gastrulation of Fundulus. Dev Biol 177:356–370PubMedCrossRefGoogle Scholar
  386. Tucker JA, Mintzer KA, Mullins MC (2008) The BMP signaling gradient patterns dorsoventral tissues in a temporally progressive manner along the anteroposterior axis. Dev Cell 14:108–119PubMedPubMedCentralCrossRefGoogle Scholar
  387. Tung TC, Chang CY, Tung YFY (1954) Experiments on the developemntal potencies of blastoderms and fragments of teleostean eggs separated latitudinally. Proc Zool Soc Lond 115:175–188CrossRefGoogle Scholar
  388. Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond B Biol Sci 237:37–72CrossRefGoogle Scholar
  389. van Boxtel AL, Chesebro JE, Heliot C, Ramel MC, Stone RK, Hill CS (2015) A temporal window for signal activation dictates the dimensions of a nodal signaling domain. Dev Cell 35:175–185PubMedPubMedCentralCrossRefGoogle Scholar
  390. Varlet I, Collignon J, Robertson EJ (1997) nodal expression in the primitive endoderm is required for specification of the anterior axis during mouse gastrulation. Development 124:1033–1044PubMedGoogle Scholar
  391. Vogt W (1925) Gestaltngsanalyse am Amphibienkeim mit örtlicher Vitalfärbung. Vorwart über Wege und Ziele: I. Teil: Methodik und Wirkungsweise der örtlichen Vitalfärbung mit Agar als Farbträger. Roux Arch 106Google Scholar
  392. Vogt W (1929) Gestaltanalyse am Amphibienkein mit örtlicher Vitalfarbung. II. Teil. Gastrulation und Mesodermbildung bei Urodelen und Anuren. Wilhelm Roux’ Arch Entwicklungsmech Org 120:384–706CrossRefGoogle Scholar
  393. Voiculescu O, Bertocchini F, Wolpert L, Keller RE, Stern CD (2007) The amniote primitive streak is defined by epithelial cell intercalation before gastrulation. Nature 449:1049–1052PubMedCrossRefGoogle Scholar
  394. Waddington CH (1932) Experiments on the development of the chick and the duck embryo cultivated in vitro. Proc Trans R Soc Lond B 211:179–230CrossRefGoogle Scholar
  395. Waddington CH (1937) Experiments on determination in the rabbit embryo. Arch Biol 48:273–290Google Scholar
  396. Waddington CH, Schmidt GA (1933) Induction by heteroplastic grafts of the primitive streak in birds. Wilhelm Roux’ Arch Entwicklungsmech Org 128:522–563CrossRefGoogle Scholar
  397. Wall NA, Craig EJ, Labosky PA, Kessler DS (2000) Mesendoderm induction and reversal of left-right pattern by mouse Gdf1, a Vg1-related gene. Dev Biol 227:495–509PubMedCrossRefGoogle Scholar
  398. Wang R-S, Saadatpour A, Albert R (2012) Boolean modeling in systems biology: an overview of methodology and applications. Phys Biol 9:055001PubMedCrossRefGoogle Scholar
  399. Warga RM, Kimmel CB (1990) Cell movements during epiboly and gastrulation in zebrafish. Development 108:569–580PubMedGoogle Scholar
  400. Warga RM, Nusslein-Volhard C (1999) Origin and development of the zebrafish endoderm. Development 126:827–838PubMedGoogle Scholar
  401. Warmflash A, Sorre B, Etoc F, Siggia ED, Brivanlou AH (2014) A method to recapitulate early embryonic spatial patterning in human embryonic stem cells. Nat Methods 11:847–854PubMedPubMedCentralCrossRefGoogle Scholar
  402. Weeks DL, Rebagliati MR, Harvey RP, Melton DA (1985) Localized maternal mRNAs in Xenopus laevis eggs. Cold Spring Harb Symp Quant Biol 50:21–30Google Scholar
  403. Weisblat DA, Sawyer RT, Stent GS (1978) Cell lineage analysis by intracellular injection of a tracer enzyme. Science 202:1295–1298PubMedCrossRefGoogle Scholar
  404. Werneburg I, Sánchez-Villagra MR (2011) The early development of the echidna, Tachyblossus aculeatus (Mammalia: Monotremata), and patterns of mammalian development. Acta Zool (Stockholm) 92:75–88Google Scholar
  405. Wernet MF, Mazzoni EO, Celik A, Duncan DM, Duncan I, Desplan C (2006) Stochastic spineless expression creates the retinal mosaic for colour vision. Nature 440:174–180PubMedCrossRefGoogle Scholar
  406. Wetzel R (1925) Untersuchungen am Hühnerkeim: I. Über die Untersuchungen des lebenden Keims mit neueren Methoden, besonders der Vogtschen vitelen Farmarkierung. Wilhelm Roux’ Arch Entwicklungsmech Org 106:463–468CrossRefGoogle Scholar
  407. Wetzel R (1929) Untersuchungen am Hünchen. Die Entwicklung des Keims während der ersten beiden Bruttage. Wilhelm Roux’ Arch Entwicklungsmech Org 119:188–321CrossRefGoogle Scholar
  408. Willier BH, Rawles ME (1931) The relation of Hensen’s node to the differentiating capacity of whole chick blastoderms as studied in chorio-allantoic grafts. J Exp Zool 59:429–465CrossRefGoogle Scholar
  409. Wilson HVP (1891) The embryology of the sea bass (Serranus atrarius). Fish Bull 9:209–277Google Scholar
  410. Wilson JT, Hill JP (1902) Primitive knot and early gastrulation cavity co-existing with independent primitive streak in Ornithorhynchus. Proc R Soc Lond 71:314–322Google Scholar
  411. Wilson JT, Hill JP (1915) The embryonic area and so-called “primitive knot” in the early montreme egg. J Cell Sci 2–61:15–25Google Scholar
  412. Wittbrodt J, Rosa FM (1994) Disruption of mesoderm and axis formation in fish by ectopic expression of activin variants: the role of maternal activin. Genes Dev 8:1448–1462PubMedCrossRefGoogle Scholar
  413. Wood A, Timmermans LPM (1988) Teleost epiboly: a reassessment of deep cell movement in the germ ring. Development 102:575–585Google Scholar
  414. Wu MY, Hill CS (2009) Tgf-beta superfamily signaling in embryonic development and homeostasis. Dev Cell 16:329–343PubMedCrossRefGoogle Scholar
  415. Xanthos JB, Kofron M, Wylie C, Heasman J (2001) Maternal VegT is the initiator of a molecular network specifying endoderm in Xenopus laevis. Development 128:167–180PubMedGoogle Scholar
  416. Xu P, Zhu G, Wang Y, Sun J, Liu X, Chen YG, Meng A (2014a) Maternal Eomesodermin regulates zygotic nodal gene expression for mesendoderm induction in zebrafish embryos. J Mol Cell Biol 6:272–285PubMedCrossRefGoogle Scholar
  417. Xu PF, Houssin N, Ferri-Lagneau KF, Thisse B, Thisse C (2014b) Construction of a vertebrate embryo from two opposing morphogen gradients. Science 344:87–89PubMedCrossRefGoogle Scholar
  418. Yamaguchi TP, Harpal K, Henkemeyer M, Rossant J (1994) fgfr-1 is required for embryonic growth and mesodermal patterning during mouse gastrulation. Genes Dev 8:3032–3044PubMedCrossRefGoogle Scholar
  419. Yamamoto M, Meno C, Sakai Y, Shiratori H, Mochida K, Ikawa Y, Saijoh Y, Hamada H (2001) The transcription factor FoxH1 (FAST) mediates Nodal signaling during anterior-posterior patterning and node formation in the mouse. Genes Dev 15:1242–1256PubMedPubMedCentralCrossRefGoogle Scholar
  420. Yamauchi H, Miyakawa N, Miyake A, Itoh N (2009) Fgf4 is required for left-right patterning of visceral organs in zebrafish. Dev Biol 332:177–185PubMedCrossRefGoogle Scholar
  421. Yang X, Dormann D, Munsterberg AE, Weijer CJ (2002) Cell movement patterns during gastrulation in the chick are controlled by positive and negative chemotaxis mediated by FGF4 and FGF8. Dev Cell 3:425–437PubMedCrossRefGoogle Scholar
  422. Ye M, Berry-Wynne KM, Asai-Coakwell M, Sundaresan P, Footz T, French CR, Abitbol M, Fleisch VC, Corbett N, Allison WT et al (2010) Mutation of the bone morphogenetic protein GDF3 causes ocular and skeletal anomalies. Hum Mol Genet 19:287–298PubMedCrossRefGoogle Scholar
  423. Yeo C, Whitman M (2001) Nodal signals to Smads through Cripto-dependent and Cripto-independent mechanisms. Mol Cell 7:949–957PubMedCrossRefGoogle Scholar
  424. Yokoi H, Shimada A, Carl M, Takashima S, Kobayashi D, Narita T, Jindo T, Kimura T, Kitagawa T, Kage T et al (2007) Mutant analyses reveal different functions of fgfr1 in medaka and zebrafish despite conserved ligand-receptor relationships. Dev Biol 304:326–337PubMedCrossRefGoogle Scholar
  425. Zhou X, Sasaki H, Lowe L, Hogan BL, Kuehn MR (1993) Nodal is a novel TGF-beta-like gene expressed in the mouse node during gastrulation. Nature 361:543–547PubMedCrossRefGoogle Scholar
  426. Zimmerman LB, De Jesus-Escobar JM, Harland RM (1996) The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86:599–606PubMedCrossRefGoogle Scholar
  427. Ziv T, Shimoni Y, Mitrani E (1992) Activin can generate ectopic axial structures in chick blastoderm explants. Development 115:689–694PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Wei-Chia Tseng
    • 1
  • Mumingjiang Munisha
    • 1
  • Juan B. Gutierrez
    • 2
    • 3
  • Scott T. Dougan
    • 1
  1. 1.Department of Cellular BiologyUniversity of GeorgiaAthensUSA
  2. 2.Department of MathematicsUniversity of GeorgiaAthensUSA
  3. 3.Institute of BioinformaticsUniversity of GeorgiaAthensUSA

Personalised recommendations