Biomimetic Adhesives and Coatings Based on Mussel Adhesive Proteins

  • Yuan Liu
  • Hao Meng
  • Phillip B. Messersmith
  • Bruce P. Lee
  • Jeffrey L. Dalsin
Chapter

Abstract

Nature provides many outstanding examples of adhesive strategies from which chemists and material scientists can draw inspiration in their pursuit of new adhesive materials. Mussels secrete adhesive proteins, which enable these organisms to bind tightly to various surfaces under water. One of the key structure component of mussel adhesive protein (MAP) is the presence of a catecholic amino acid, 3,4-dihydroxyphenylalanine (DOPA), which plays an important role in the curing and interfacial binding of MAP. The catechol side chain is capable of undergoing various reversible and irreversible interactions with both organic and inorganic substrates. Modification of inert polymer systems with DOPA and other catechol derivatives have imparted these materials with water-resistant adhesive properties and the ability to cure rapidly. This chapter focuses on the various strategies used in developing biomimetic adhesives and coatings, as well as recent developments of self-healing and smart materials that employ MAP chemistry.

Notes

Acknowledgments

The authors would like to acknowledge NIH (R15GM104846 and R15GM112082 for BPL, YL, and HM; R37DE014193 and R01EB005772 for PBM) for financial support of this work.

References

  1. Adams J, Behnke M, Chen S, Cruickshank AA, Dick LR, Grenier L, Klunder JM, Ma YT, Plamondon L, Stein RL (1998) Potent and selective inhibitors of the proteasome: dipeptidyl boronic acids. Bioorg Med Chem Lett 8(4):333–338PubMedCrossRefGoogle Scholar
  2. Ahn BK, Lee DW, Israelachvili JN, Waite JH (2014) Surface-initiated self-healing of polymers in aqueous media. Nat Mat 13(9):867–872. doi:10.1038/NMAT4037 CrossRefGoogle Scholar
  3. Ahn BK, Das S, Linstadt R, Kaufman Y, Martinez-Rodriguez NR, Mirshafian R, Kesselman E, Talmon Y, Lipshutz BH, Israelachvili JN, Waite JH (2015) High-performance mussel-inspired adhesives of reduced complexity. Nat Commun 6:8663. doi:10.1038/ncomms9663 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Alexandridis P (1997) Poly(ethylene oxide)poly(propylene oxide) block copolymer surfactants. Curr Opin Colloid Interface Sci 2:478CrossRefGoogle Scholar
  5. Amstad E, Gillich T, Bilecka I, Textor M, Reimhult E (2009) Ultrastable iron oxide nanoparticle colloidal suspensions using dispersants with catechol-derived anchor groups. Nano Lett 9(12):4042–4048. doi:10.1021/nl902212q PubMedCrossRefGoogle Scholar
  6. Amstad E, Gehring AU, Fischer H, Nagaiyanallur VV, Hahner G, Textor M, Reimhult E (2011) Influence of Electronegative Substituents on the Binding Affinity of Catechol-Derived Anchors to Fe(3)O(4) Nanoparticles. J Phys Chem C 115(3):683–691. doi:10.1021/Jp1109306 CrossRefGoogle Scholar
  7. Anderson JM, Rodriguez A, Chang DT (2008) Foreign body reaction to biomaterials. Semin Immun 20(2):86–100. doi:10.1016/j.smim.2007.11.004 CrossRefGoogle Scholar
  8. Anderson TH, Yu J, Estrada A, Hammer MU, Waite JH, Israelachvili JN (2010) The contribution of DOPA to substrate-peptide adhesion and internal cohesion of mussel-inspired synthetic peptide films. Adv Funct Mat 20(23):4196–4205. doi:10.1002/adfm.201000932 CrossRefGoogle Scholar
  9. Anderson J, Lin M-H, Privette C, Flowers M, Murley M, Lee BP, Ong KG (2015) Wireless magnetoelastic sensors for tracking degradation profiles of nitrodopamine-modified poly(ethylene glycol). Scijet 4:80Google Scholar
  10. Araujo PZ, Morando PJ, Blesa MA (2005) Interaction of catechol and gallic acid with titanium dioxide in aqueous suspensions. 1. Equilibrium studies. Langmuir 21(8):3470–3474. doi:10.1021/la0476985 PubMedCrossRefGoogle Scholar
  11. Arul V, Masilamoni JG, Jesudason EP, Jaji PJ, Inayathullah M, Dicky John DG, Vignesh S, Jayakumar R (2012) Glucose oxidase incorporated collagen matrices for dermal wound repair in diabetic rat models: a biochemical study. J Biomat Appl 26(8):917–938CrossRefGoogle Scholar
  12. Autumn K, Liang YA, Hsieh ST, Wzesch W, Chan WP, Kenny TW, Fearing R, Full RJ (2000) Adhesive force of a single gecko foot-hair. Nature 405:681–685PubMedCrossRefGoogle Scholar
  13. Barrett DG, Bushnell GG, Messersmith PB (2013) Mechanically robust, negative-swelling, mussel-inspired tissue adhesives. Adv Healthcare Mater 2(5):745–755CrossRefGoogle Scholar
  14. Barrett DG, Sileika TS, Messersmith PB (2014) Molecular diversity in phenolic and polyphenolic precursors of tannin-inspired nanocoatings. Chem Commun 50(55):7265–7268. doi:10.1039/c4cc02961e CrossRefGoogle Scholar
  15. Baty AM, Leavitt PK, Siedlecki CA, Tyler BJ, Suci PA, Marchant RE, Geesey GG (1997) Adsorption of adhesive proteins from the marine mussel, mytilus edulis, on polymer films in the hydrated state using angle dependent X-ray photoelectron spectroscopy and atomic force microscopy. Langmuir 13(21):5702–5710CrossRefGoogle Scholar
  16. Bilic G, Brubaker C, Messersmith PB, Mallik AS, Quinn TM, Haller C, Done E, Gucciardo L, Zeisberger SM, Zimmermann R, Deprest J, Zisch AH (2010) Injectable candidate sealants for fetal membrane repair: bonding and toxicity in vitro. Am J Obstet Gynecol 202:85.e81–85.e89CrossRefGoogle Scholar
  17. Blackburn SL, Smyth MD (2007) Hydrogel-induced cervicomedullary compression after posterior fossa decompression for Chiari malformation—case report. J Neurosurg 106(4):302–304. doi:10.3171/ped.2007.106.4.302 PubMedGoogle Scholar
  18. Braulta ND, Gaoa C, Xuea H, Piliarik M, Jr H, Jianga S, Yua Q (2010) Ultra-low fouling and functionalizable zwitterionic coatings grafted onto SiO2 via a biomimetic adhesive group for sensing and detection in complex media. Biosens Bioelectron 25:2276–2282CrossRefGoogle Scholar
  19. Brian N, Ahswin H, Smart N, Bayon Y, Wohlert S, Hunt JA (2012) Reactive oxygen species (ROS)-a family of fate deciding molecules pivotal in constructive inflammation and wound healing. Eur Cell Mater 24:249–265Google Scholar
  20. Bridgett MJ, Davies MC, Denyer SP (1992) Control of staphylococcal adhesion to polystyrene surfaces by polymer surface modification with surfactants. Biomaterials 13(7):411–416PubMedCrossRefGoogle Scholar
  21. Brodie M, Vollenweider L, Murphy JL, Xu F, Lyman A, Lew WD, Lee BP (2011) Biomechanical properties of achilles tendon repair augmented with bioadhesive-coated scaffold. Biomed Mater 6(1):015014PubMedPubMedCentralCrossRefGoogle Scholar
  22. Brunette DM, Tengvall P, Textor M, Thomsen P (2001) Titanium in medicine. Springer, New YorkCrossRefGoogle Scholar
  23. Burke SA, Ritter-Jones M, Lee BP, Messersmith PB (2007) Thermal gelation and tissue adhesion of biomimetic hydrogels. Biomed Mater 2(4):203–210. doi:10.1088/1748-6041/2/4/001 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Burzio LA, Waite JH (2000) Cross-linking in adhesive quinoproteins: studies with model decapeptides. Biochemistry 39(36):11147–11153PubMedCrossRefGoogle Scholar
  25. Burzio LO, Burzio VA, Silva T, Burzio LA, Pardo J (1997) Environmental bioadhesion: themes and applications. Curr Opin Biotechnol 8(3):309–312PubMedCrossRefGoogle Scholar
  26. Carlisle EM (1970) Silicon: a possible factor in bone calcification. Science 167(3916):279–280. doi:10.1126/science.167.3916.279 PubMedCrossRefGoogle Scholar
  27. Catron ND, Lee H, Messersmith PB (2006) Enhancement of poly (ethylene glycol) mucoadsorption by biomimetic end group functionalization. Biointerphases 1(4):134–141PubMedCrossRefGoogle Scholar
  28. Cencer MM, Liu Y, Winter A, Murley M, Meng H, Lee BP (2014) Effect of pH on the rate of curing and bioadhesive properties of dopamine functionalized poly(ethylene glycol) hydrogels. Biomacromolecules 15(8):2861–2869. doi:10.1021/bm500701u PubMedPubMedCentralCrossRefGoogle Scholar
  29. Cencer M, Murley M, Liu Y, Lee BP (2015) Effect of nitro-functionalization on the cross-linking and bioadhesion of biomimetic adhesive moiety. Biomacromolecules 16(1):404–410. doi:10.1021/bm5016333 PubMedCrossRefGoogle Scholar
  30. Characklis KC (1990) Biofilm Processes. In: Characklis WG, Marshall KC (eds) Biofilms. Wiley, New York, pp 195–231Google Scholar
  31. Chelikani P, Fita I, Loewen PC (2004) Diversity of structures and properties among catalases. Cell Mol Life Sci 61(2):192–208. doi:10.1007/s00018-003-3206-5 PubMedCrossRefGoogle Scholar
  32. Cheng C, Li S, Nie S, Zhao W, Yang H, Sun S, Zhao C (2012) General and biomimetic approach to biopolymer-functionalized graphene oxide nanosheet through adhesive dopamine. Biomacromolecules 13(12):4236–4246. doi:10.1021/bm3014999 PubMedCrossRefGoogle Scholar
  33. Chirdon WM, O’Brien WJ, Robertson RE (2003) Adsorption of catechol and comparative solutes on hydroxyapatite. J Biomed Mater Res Part B: Appl Biomater 66B(2):532–538CrossRefGoogle Scholar
  34. Choi YS, Kang DG, Lim S, Yang YJ, Kim CS, Cha HJ (2011) Recombinant mussel adhesive protein fp-5 (MAP fp-5) as a bulk bioadhesive and surface coating material. Biofouling 27(7):729–737. doi:10.1080/08927014.2011.600830 PubMedCrossRefGoogle Scholar
  35. Choi YC, Choi JS, Jung YJ, Cho YW (2014) Human gelatin tissue-adhesive hydrogels prepared by enzyme-mediated biosynthesis of DOPA and Fe3+ ion crosslinking. J Mater Chem B 2(2):201–209. doi:10.1039/c3tb20696c CrossRefGoogle Scholar
  36. Clement M-V, Long LH, Ramalingam J, Halliwell B (2002) The cytotoxicity of dopamine may be an artefact of cell culture. J Neurochem 81(3):414–421. doi:10.1046/j.1471-4159.2002.00802.x PubMedCrossRefGoogle Scholar
  37. Creutz C, Chou MH (2008) Binding of catechols to mononuclear titanium(IV) and to 1- and 5-nm TiO2 nanoparticles. Inorg Chem 47(9):3509–3514. doi:10.1021/ic701687k PubMedCrossRefGoogle Scholar
  38. Crisp DJ, Walker G, Young GA, Yule AB (1985) Adhesion and substrate choice in mussels and barnacles. J Colloid Interface Sci 104(1):40–50CrossRefGoogle Scholar
  39. Cui J, Wang Y, Postma A, Hao J, Hosta-Rigau L, Caruso F (2010) Monodisperse polymer capsules: tailoring size, shell thickness, and hydrophobic cargo loading via emulsion templating. Adv Funct Mater 20(10):1625–1631. doi:10.1002/adfm.201000209 CrossRefGoogle Scholar
  40. Dalsin JL, Messersmith PB (2003) Surface modification for protein resistance using a biomimetic approach. In Thomas JL, Kiick KL, Gower LA (ed) Materials inspired by biology. Materials research society symposium series, vol 774. pp 75–80Google Scholar
  41. Dalsin JL, Messersmith P (2005) Bioinspired antifouling polymers. Mater Today 8(9):38–46CrossRefGoogle Scholar
  42. Dalsin JL, Hu B, Lee BP, Messersmith PB (2003) Mussel adhesive protein mimetic polymers for the preparation of nonfouling surfaces. J Am Chem Soc 125:6CrossRefGoogle Scholar
  43. Dalsin JL, Lin L, Tosatti S, Voeroes J, Textor M, Messersmith PB (2005) Protein resistance of titanium oxide surfaces modified by biologically inspired mPEG-DOPA. Langmuir 21(2):640–646PubMedCrossRefGoogle Scholar
  44. Dalsin JL, Sherman DL, Lee BP, Messersmith PB (2006) Versatile mussel adhesive-inspired biomimetic antifouling polymers. PMSE Prepr 94:854–855Google Scholar
  45. Dalsin JL, Lee BP, Vollenweider L, Silvary S, Murphy JL, Xu F, Spitz A, Lyman A (2012) Multi-armed Catechol compound blends. US Patent 8,119,742Google Scholar
  46. Deacon MP, Davis SS, Waite JH, Harding SE (1998) Structure and mucoadhesion of mussel glue protein in dilute solution. Biochemistry 37(40):14108–14112PubMedCrossRefGoogle Scholar
  47. Deming TJ (1997) Facile synthesis of block copolypeptides of defined architecture. Nature 390(6658):386–389PubMedCrossRefGoogle Scholar
  48. Desai NP, Hossainy SFA, Hubbell JA (1992) Surface-immobilized polyethylene oxide for bacterial repellence. Biomaterials 13(7):417–420PubMedCrossRefGoogle Scholar
  49. Ding XC, Vegesna GK, Meng H, Winter A, Lee BP (2015) Nitro-group functionalization of dopamine and its contribution to the viscoelastic properties of catechol-containing nanocomposite hydrogels. Macromol Chem Phys 216(10):1109–1119. doi:10.1002/macp.201500010 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Fan X, Lin L, Dalsin JL, Messersmith PB (2005) Biomimetic anchor for surface-initiated polymerization from metal substrates. J Am Chem Soc 127(45):15843–15847. doi:10.1021/ja0532638 PubMedCrossRefGoogle Scholar
  51. Fan X, Lin L, Messersmith PB (2006) Cell fouling resistance of polymer brushes grafted from Ti substrates by surface-initiated polymerization: effect of ethylene glycol side chain length. Biomacromolecules 7(8):2443–2448PubMedCrossRefGoogle Scholar
  52. Fang H, Kaur G, Wang BH (2004) Progress in boronic acid-based fluorescent glucose sensors. J Fluoresc 14(5):481–489. doi:10.1023/B:Jofl.0000039336.51399.3b PubMedCrossRefGoogle Scholar
  53. Fei B, Qian BT, Yang ZY, Wang RH, Liu WC, Mak CL, Xin JH (2008) Coating carbon nanotubes by spontaneous oxidative polymerization of dopamine. Carbon 46(13):1795–1797. doi:10.1016/j.carbon.2008.06.049 CrossRefGoogle Scholar
  54. Filpula DR, Lee SM, Link RP, Strausberg SL, Strausberg RL (1990) Structural and functional repetition in a marine mussel adhesive protein. Biotechnol Prog 6(3):171–177PubMedCrossRefGoogle Scholar
  55. Gao C, Li G, Xue H, Yang W, Zhang F, Jiang S (2010) Functionalizable and ultra-low fouling zwitterionic surfaces via adhesive mussel mimetic linkages. Biomaterials 31(7):1486–1492PubMedCrossRefGoogle Scholar
  56. Garcia-Fernandez L, Cui J, Serrano C, Shafiq Z, Gropeanu RA, Miguel VS, Ramos JI, Wang M, Auernhammer GK, Ritz S, Golriz AA, Berger R, Wagner M, del Campo A (2013) Antibacterial strategies from the sea: polymer-bound cl-catechols for prevention of biofilm formation. Adv Mater 25(4):529–533. doi:10.1002/adma.201203362 PubMedCrossRefGoogle Scholar
  57. Geim AK, Dubonos SV, Grigorieva IV, Novoselov KS, Zhukov AA, Shapoval SY (2003) Microfabricated adhesive mimicking gecko foot-hair. Nat Mater 2:461–463PubMedCrossRefGoogle Scholar
  58. Glass P, Chung H, Washburn NR, Sitti M (2009) Enhanced reversible adhesion of dopamine methacrylamide-coated elastomer microfibrillar structures under wet conditions. Langmuir 25(12):6607–6612. doi:10.1021/la9009114 PubMedCrossRefGoogle Scholar
  59. Glass P, Chung H, Washburn NR, Sitti M (2010) Enhanced wet adhesion and shear of elastomeric micro-fiber arrays with mushroom tip geometry and a photopolymerized p(DMA-co-MEA) tip coating. Langmuir 26(22):17357–17362. doi:10.1021/la1029245 PubMedCrossRefGoogle Scholar
  60. Gong Y-K, Liu L-P, Messersmith PB (2012) Doubly biomimetic catecholic phosphorylcholine copolymer: a platform strategy for fabricating antifouling surfaces. Macromol Biosci 12(7):979–985. doi:10.1002/mabi.201200074 PubMedCrossRefGoogle Scholar
  61. Gracias DH (2013) Stimuli responsive self-folding using thin polymer films. Curr Opin Chem Eng 2(1):112–119. doi:10.1016/j.coche.2012.10.003 CrossRefGoogle Scholar
  62. Grande DA, Pitman MI (1988) The use of adhesives in chondrocyte transplantation surgery. Preliminary studies. Bull Hosp Jt Dis Orthop Inst 48(2):140–148PubMedGoogle Scholar
  63. Green K, Berdecia R, Cheeks L (1987) Mussel adhesive protein: permeability characteristics when used as a basement membrane. Curr Eye Res 6(6):835–837PubMedCrossRefGoogle Scholar
  64. Grindy SC, Learsch R, Mozhdehi D, Cheng J, Barrett DG, Guan ZB, Messersmith PB, Holten-Andersen N (2015) Control of hierarchical polymer mechanics with bioinspired metal-coordination dynamics. Nat Mater 14(12):1210–1216PubMedPubMedCentralCrossRefGoogle Scholar
  65. Groll M, Berkers CR, Ploegh HL, Ovaa H (2006) Crystal structure of the boronic acid-based proteasome inhibitor bortezomib in complex with the yeast 20S proteasome. Structure 14(3):451–456. doi:10.1016/j.str.2005.11.019 PubMedCrossRefGoogle Scholar
  66. Haller CM, Buerzle W, Kivelio A, Perrini M, Brubaker CE, Gubeli RJ, Mallik AS, Weber W, Messersmith PB, Mazza E, Ochsenbein-Koelble N, Zimmermann R, Ehrbar M (2012) Mussel-mimetic tissue adhesive for fetal membrane repair: an ex vivo evaluation. Acta Biomater 8(12):4365–4370. doi:10.1016/j.actbio.2012.07.047 PubMedCrossRefGoogle Scholar
  67. Ham HO, Liu Z, Lau KHA, Lee H, Messersmith PB (2011) Facile DNA immobilization on Surfaces through a catecholamine polymer. Angew Chem Int Ed 50(3):732–736. doi:10.1002/anie.201005001 CrossRefGoogle Scholar
  68. Hansen DC, Dexter SC, Waite JH (1995) The inhibition of corrosion of S30403 stainless steel by a naturally occurring catecholic polymer. Corros Sci 37(9):1423–1441CrossRefGoogle Scholar
  69. Harris JM, Dust JM, McGill RA, Harris PA, Edgell MJ, Sedaghat-Herati RM, Karr LJ, Donnelly DL (1991) New polyethylene glycols for biomedical applications. Water-soluble polymer, ACS symposium series, vol 467. pp 418–429Google Scholar
  70. Harris LG, Tosatti S, Wieland M, Textor M, Richards RG (2004) Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly(L-lysine)-grafted-poly(ethylene glycol) copolymers. Biomaterials 25(18):4135–4148PubMedCrossRefGoogle Scholar
  71. He LH, Fullenkamp DE, Rivera JG, Messersmith PB (2011) pH responsive self-healing hydrogels formed by boronate-catechol complexation. Chem Commun 47(26):7497–7499. doi:10.1039/C1cc11928a CrossRefGoogle Scholar
  72. Hench LL (2009) Genetic design of bioactive glass. J Eur Ceram Soc 29(7):1257–1265. doi:10.1016/j.jeurceramsoc.2008.08.002 CrossRefGoogle Scholar
  73. Hench LL, Paschall HA (1973) Direct chemical bond of bioactive glass-ceramic materials to bone and muscle. J Biomed Mater Res 7(3):25–42. doi:10.1002/jbm.820070304 PubMedCrossRefGoogle Scholar
  74. Herlinger E, Jameson RF, Linert W (1995) Spontaneous autoxidation of dopamine. J Chem Soc Perk T 2(2):259–263. doi:10.1039/P29950000259 CrossRefGoogle Scholar
  75. Holten-Andersen N, Mates TE, Toprak MS, Stucky GD, Zok FW, Waite JH (2009) Metals and the integrity of a biological coating: the cuticle of mussel byssus. Langmuir 25(6):3323–3326. doi:10.1021/la8027012 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Holten-Andersen N, Harrington MJ, Birkedal H, Lee BP, Messersmith PB, Lee KYC, Waite JH (2011) pH-induced mussel metal-ligand crosslinks yield self-healing polymer networks with near-covalent elastic moduli. Proc Natl Acad Sci 15:2651–2655CrossRefGoogle Scholar
  77. Holten-Andersen N, Jaishankar A, Harrington MJ, Fullenkamp DE, DiMarco G, He LH, McKinley GH, Messersmith PB, Leei KYC (2014) Metal-coordination: using one of nature’s tricks to control soft material mechanics. J Mater Chem B 2(17):2467–2472. doi:10.1039/c3tb21374a CrossRefGoogle Scholar
  78. Hong S, Yang K, Kang B, Lee C, Song IT, Byun E, Park KI, Cho SW, Lee H (2013) Hyaluronic acid catechol: a biopolymer exhibiting a pH-dependent adhesive or cohesive property for human neural stem cell engineering. Adv Funct Mater 23(14):1774–1780. doi:10.1002/adfm.201202365 CrossRefGoogle Scholar
  79. Hong SH, Shin M, Lee J, Ryu JH, Lee S, Yang JW, Kim WD, Lee H (2015) STAPLE: stable alginate gel prepared by linkage exchange from ionic to covalent bonds. Adv Healthcare Mater. doi:10.1002/adhm.201400833
  80. Hoppe A, Güldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32(11):2757–2774. doi:10.1016/j.biomaterials.2011.01.004 PubMedCrossRefGoogle Scholar
  81. Huang K, Lee BP, Ingram D, Messersmith PB (2002) Synthesis and characterization of self-assembling block copolymers containing bioadhesive end groups. Biomacromolecules 3(2):397–406PubMedCrossRefGoogle Scholar
  82. Huber G, Mantz H, Spolenak R, Mecke K, Jacobs K, Gorb SN, Arzt E (2005) Evidence for capillary contributions to gecko adhesion from single spatula nanomechanical measurements. Proc Natl Acad Sci U S A 102:16293–16296PubMedPubMedCentralCrossRefGoogle Scholar
  83. Hwang DS, Yoo HJ, Jun JH, Moon WK, Cha HJ (2004) Expression of functional recombinant mussel adhesive protein Mgfp-5 in Escherichia coli. Appl Environ Microbiol 70(6):3352–3359PubMedPubMedCentralCrossRefGoogle Scholar
  84. Hwang DS, Gim Y, Cha HJ (2005) Expression of functinoal recombinant mussel adhesive protein type 3A in eschereschia coli. Biotechnol Prog 21:965–970PubMedCrossRefGoogle Scholar
  85. Hwang DS, Gim Y, Kang DG, Kim YK, Cha HJ (2007) Recombinant mussel adhesive protein Mgfp-5 as cell adhesion biomaterial. J Biotechnol 127(4):727–735. doi:10.1016/j.jbiotec.2006.08.005 PubMedCrossRefGoogle Scholar
  86. Ionov L (2013) Biomimetic hydrogel-based actuating systems. Adv Funct Mater 23(36):4555–4570. doi:10.1002/adfm.201203692 CrossRefGoogle Scholar
  87. Kamath KR, Danilich MJ, Marchant RE, Park K (1996) Platelet interactions with plasma-polymerized ethylene oxide and N-vinyl-2-pyrrolidone films and linear poly(ethylene oxide) layer. J Biomater Sci Polym Ed 7(11):977–988PubMedCrossRefGoogle Scholar
  88. Kang SM, Hwang NS, Yeom J, Park SY, Messersmith PB, Choi IS, Langer R, Anderson DG, Lee H (2012) One-step multipurpose surface functionalization by adhesive catecholamine. Adv Funct Mater 22(14):2949–2955. doi:10.1002/adfm.201200177 PubMedPubMedCentralCrossRefGoogle Scholar
  89. Kastrup CJ, Nahrendorf M, Figueiredo JL, Lee H, Kambhampati S, Lee T, Cho S-W, Gorbatov R, Iwamoto Y, Dang TT, Dutta P, Yeon JH, Cheng H, Pritchard CD, Vegas AJ, Siegel CD, MacDougall S, Okonkwo M, Thai A, Stone JR, Coury AJ, Weissleder R, Langer R, Anderson DG (2012) Painting blood vessels and atherosclerotic plaques with an adhesive drug depot. Proc Natl Acad Sci U S A 109(52):21444–21449. doi:10.1073/pnas.1217972110 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Kawabata T, Schepkin V, Haramaki N, Phadke RS, Packer L (1996) Iron coordination by catechol derivative antioxidants. Biochem Pharmacol 51(11):1569–1577PubMedCrossRefGoogle Scholar
  91. Kenausis GL, Voros J, Elbert DL, Huang N, Hofer R, Ruiz-Taylor L, Textor M, Hubbell JA, Spencer ND (2000) Poly(L-lysine)-g-poly(ethylene glycol) layers on metal oxide surfaces: attachment mechanism and effects of polymer architecture on resistance to protein adsorption. J Phys Chem B 104(14):3298–3309CrossRefGoogle Scholar
  92. Kim D, Hwang DS, Kang DG, Kim JYH, Cha HJ (2008) Enhancement of mussel adhesive protein production in Escherichia coli by co-expression of bacterial hemoglobin. Biotechnol Prog 24(3):663–666. doi:10.1021/bp0703477 PubMedCrossRefGoogle Scholar
  93. Kim E, Liu Y, Shi XW, Yang XH, Bentley WE, Payne GF (2010) Biomimetic approach to confer redox activity to thin chitosan films. Adv Funct Mater 20(16):2683–2694. doi:10.1002/adfm.200902428 CrossRefGoogle Scholar
  94. Kim K, Ryu JH, Lee DY, Lee H (2013) Bio-inspired catechol conjugation converts water-insoluble chitosan into a highly water-soluble, adhesive chitosan derivative for hydrogels and LbL assembly. Biomater Sci-UK 1(7):783–790. doi:10.1039/C3bm00004d CrossRefGoogle Scholar
  95. Kim S, Gim T, Kang SM (2014) Stability-enhanced polydopamine coatings on solid substrates by iron(III) coordination. Prog Org Coat 77(8):1336–1339. doi:10.1016/j.porgcoat.2014.04.011 CrossRefGoogle Scholar
  96. Ko R, Cadieux PA, Dalsin JL, Lee BP, Elwood CN, Razvi H (2008) Novel uropathogen-resistant coatings inspired by marine mussels. J Endourol 22(6):1153–1160PubMedCrossRefGoogle Scholar
  97. Krogsgaard M, Hansen MR, Birkedal H (2014) Metals & polymers in the mix: fine-tuning the mechanical properties & color of self-healing mussel-inspired hydrogels. J Mater Chem B 2(47):8292–8297. doi:10.1039/c4tb01503g CrossRefGoogle Scholar
  98. Kuang J, Messersmith PB (2012) Universal surface-initiated polymerization of antifouling zwitterionic brushes using a mussel-mimetic peptide initiator. Langmuir 28(18):7258–7266. doi:10.1021/la300738e PubMedPubMedCentralCrossRefGoogle Scholar
  99. Kuang J, Guo JL, Messersmith PB (2014) High ionic strength formation of DOPA-melanin coating for loading and release of cationic antimicrobial compounds. Adv Mater Interfaces 1(6). doi:10.1002/admi.201400145
  100. Kummert R, Stumm W (1980) The surface complexation of organic acids on hydrous g-alumina. J Colloid Interface Sci 75(2):373–385CrossRefGoogle Scholar
  101. Lau KHA, Sileika TS, Park SH, Sousa AML, Burch P, Szleifer I, Messersmith PB (2015) Molecular design of antifouling polymer brushes using sequence-specific peptoids. Adv Mater Interfaces 2 (1):1400225. doi:10.1002/admi.201400225
  102. Lee BP (2009) Biomimetic compounds and synthetic methods therefor. US Patent 7,622,533Google Scholar
  103. Lee BP (2011) Biomimetic compounds and synthetic methods therefor. US Patent 8,030,413Google Scholar
  104. Lee BP, Konst S (2014) Novel hydrogel actuator inspired by reversible mussel adhesive protein chemistry. Adv Mater 26(21):3415–3419PubMedCrossRefGoogle Scholar
  105. Lee BP, Dalsin JL, Messersmith PB (2001) Enzymatic and non-enzymatic pathways to formation of DOPA-modifled PEG hydrogels. Polym Prepr 42:151–152Google Scholar
  106. Lee BP, Dalsin JL, Messersmith PB (2002) Synthesis and gelation of DOPA-modified poly(ethylene glycol) hydrogels. Biomacromolecules 3(5):1038–1047PubMedCrossRefGoogle Scholar
  107. Lee BP, Huang K, Nunalee N, Shull K, Messersmith PB (2004) Synthesis of 3,4-dihydroxyphenylalanine (DOPA) containing monomers and their copolymerization with PEG-diacrylate to form hydrogels. J Biomater Sci Polym Ed 15(4):449–464PubMedCrossRefGoogle Scholar
  108. Lee BP, Chao C-Y, Nunalee FN, Motan E, Shull KR, Messersmith PB (2006a) Rapid photocurable of amphiphilic block copolymers hydrogels with high DOPA contents. Maclomolecules 39:1740–1748CrossRefGoogle Scholar
  109. Lee H, Scherer NF, Messersmith PB (2006b) Single molecule mechanics of mussel adhesion. Proc Natl Acad Sci 103:12999–13003PubMedPubMedCentralCrossRefGoogle Scholar
  110. Lee H, Dellatore SM, Miller WM, Messersmith PB (2007a) Mussel-inspired surface chemistry for multifunctional coatings. Science 318(5849):426–430PubMedPubMedCentralCrossRefGoogle Scholar
  111. Lee H, Lee BP, Messersmith PB (2007) A reversible wet/dry adhesive inspired by mussels and geckos. Nature 448 (7151):338-U334. doi:10.1038/Nature05968
  112. Lee H, Rho J, Messersmith PB (2009) Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings. Adv Mater 21(4):431–434. doi:10.1002/adma.200801222 PubMedPubMedCentralCrossRefGoogle Scholar
  113. Lee Y, Chung HJ, Yeo S, Ahn CH, Lee H, Messersmith PB, Park TG (2010a) Thermo-sensitive, injectable, and tissue adhesive sol-gel transition hyaluronic acid/pluronic composite hydrogels prepared from bio-inspired catechol-thiol reaction. Soft Matter 6(5):977–983. doi:10.1039/b919944f CrossRefGoogle Scholar
  114. Lee BP, Dalsin JL, Vollenweider L, Murphy JL, Xu F, Virosco J, Lew W, White J (2010a) Bioadhesive construct. US20100137902 PatentGoogle Scholar
  115. Lee BP, Murphy JL, Silvary S (2010b) Multibranched bioadhesive compounds and synthetic methods therefor. US Patent Application 20100197868Google Scholar
  116. Lee BP, Messersmith PB, Israelachvili JN, Waite JH (2011) Mussel-inspired adhesives and coatings. Annu Rev Mater Res 41:99–132. doi:10.1146/annurev-matsci-062910-100429 PubMedPubMedCentralCrossRefGoogle Scholar
  117. Lee BP, Dalsin JL, Vollenweider L, Murphy JL, Xu F, Virosco J, Lew W, White J (2012) Bioadhesive construct sith polymer blends. US20120003888 PatentGoogle Scholar
  118. Lee C, Shin J, Lee JS, Byun E, Ryu JH, Um SH, Kim DI, Lee H, Cho SW (2013a) Bioinspired, calcium-free alginate hydrogels with tunable physical and mechanical properties and improved biocompatibility. Biomacromolecules 14(6):2004–2013. doi:10.1021/Bm400352d PubMedCrossRefGoogle Scholar
  119. Lee K, Oh MH, Lee MS, Nam YS, Park TG, Jeong JH (2013b) Stabilized calcium phosphate nano-aggregates using a dopa-chitosan conjugate for gene delivery. Int J Pharm 445(1–2):196–202. doi:10.1016/j.ijpharm.2013.01.014 PubMedCrossRefGoogle Scholar
  120. Lee BP, Liu Y, Konst S (2014) Novel hydrogel actuator based on biomimetic chemistry. MRS Proc 1710:mrss14-1710-XX1708-1701. doi:10.1557/opl.2014.511
  121. Lee BP, Lin M-H, Narkar A, Konst S, Wilharm R (2015) Modulating the movement of hydrogel actuator based on catechol-iron ion coordination chemistry. Sens Actuators B Chem 206:456–462. doi:10.1016/j.snb.2014.09.089 CrossRefGoogle Scholar
  122. Lee BP, Narkar A, Wilharm R (2016) Effect of metal ion type on the movement of hydrogel actuator based on catechol-metal ion coordination chemistry. Sensors Actuators B Chem 227:248–254CrossRefGoogle Scholar
  123. Li J, Christensen BM (1994) Effect of pH on the oxidation pathway of dopamine and dopa. J Electroanal Chem 375(1–2):219–231. doi:10.1016/0022-0728(94)03389-7 CrossRefGoogle Scholar
  124. Li G, Cheng G, Xue H, Chen S, Zhang F, Jiang S (2008) Ultra low fouling zwitterionic polymers with a biomimetic adhesive group. Biomaterials 29(35):4592–4597. doi:10.1016/j.biomaterials.2008.08.021 PubMedCrossRefGoogle Scholar
  125. Li G, Xue H, Gao C, Zhang F, Jiang AS (2010) Nonfouling Polyampholytes from an Ion-Pair Comonomer with Biomimetic Adhesive Groups. Maclomolecules 43:14–1CrossRefGoogle Scholar
  126. Lim HL, Hwang Y, Kar M, Varghese S (2014) Smart hydrogels as functional biomimetic systems. Biomater Sci 2(5):603–618. doi:10.1039/C3bm60288e CrossRefGoogle Scholar
  127. Liu Y, Zhan H, Skelton S, Lee BP Marine adhesive containing nanocomposite hydrogel with enhanced materials and bioadhesive properties. In: MRS Proceedings, 2013. Cambridge University Press, pp 33–38Google Scholar
  128. Liu Y, Meng H, Konst S, Sarmiento R, Rajachar R, Lee BP (2014) Injectable dopamine-modified poly(ethylene glycol) nanocomposite hydrogel with enhanced adhesive property and bioactivity. ACS Appl Mater Interfaces 6(19):16982–16992. doi:10.1021/am504566v PubMedPubMedCentralCrossRefGoogle Scholar
  129. Long JR, Dindot JL, Zebroski HK, Suzanne CRH, Campbell AA, Stayton PS, Drobny GP (1998) A peptide that inhibits hydroxyapatite growth is in an extended conformation on the crystal surface. Proc Natl Acad Sci U S A 95(21):12083–12087PubMedPubMedCentralCrossRefGoogle Scholar
  130. Ma Z, Jia X, Hu J, Zhang G, Zhou F, Liu Z, Wang H (2013) Dual-responsive capsules with tunable low critical solution temperatures and their loading and release behavior. Langmuir 29(19):5631–5637. doi:10.1021/la400025j PubMedCrossRefGoogle Scholar
  131. Malmsten M, Emoto K, Van Alstine JM (1998) Effect of chain density on inhibition of protein adsorption by poly(ethylene glycol) based coatings. J Colloid Interface Sci 202(2):507–517CrossRefGoogle Scholar
  132. Martin ST, Kesselman JM, Park DS, Lewis NS, Hoffmann MR (1996) Surface structures of 4-chlorocatechol adsorbed on titanium dioxide. Environ Sci Technol 30:8Google Scholar
  133. Marumo K, Waite JH (1986) Optimization of hydroxylation of tyrosine and tyrosine-containing peptides by mushroom tyrosinase. Biochim Biophys Acta 872(1-2):98–103PubMedCrossRefGoogle Scholar
  134. Matos-Perez CR, Wilker JJ (2012) Ambivalent adhesives: combining biomimetic cross-linking with antiadhesive oligo(ethylene glycol). Macromolecules 45(16):6634–6639. doi:10.1021/Ma300962d PubMedPubMedCentralCrossRefGoogle Scholar
  135. Matos-Pérez CR, White JD, Wilker JJ (2012) Polymer composition and substrate influences on the adhesive bonding of a biomimetic, cross-linking polymer. J Am Chem Soc 134(22):9498–9505PubMedPubMedCentralCrossRefGoogle Scholar
  136. Maugh KJ, Anderson DM, Strausberg R, Strausberg SL, Mccandliss R, Wei T, Filpula D (1988) Recombinant bioadhesive proteins of marine animals and their use in adhesive compositions. USA Patent 87-US3048Google Scholar
  137. Meisel H, Olieman C (1998) Estimation of calcium-binding constants of casein phosphopeptides by capillary zone electrophoresis. Anal Chim Acta 372(1–2):291–297CrossRefGoogle Scholar
  138. Meng H, Li Y, Faust M, Konst S, Lee BP (2015) Hydrogen peroxide generation and biocompatibility of hydrogel-bound mussel adhesive moiety. Acta Biomater 17:160–169. doi:10.1016/j.actbio.2015.02.002 PubMedPubMedCentralCrossRefGoogle Scholar
  139. Menyo MS, Hawker CJ, Waite JH (2013) Versatile tuning of supramolecular hydrogels through metal complexation of oxidation-resistant catechol-inspired ligands. Soft Matter. doi:10.1039/c3sm51824h PubMedPubMedCentralGoogle Scholar
  140. Meredith HJ, Jenkins CL, Wilker JJ (2014) Enhancing the adhesion of a biomimetic polymer yields performance rivaling commercial glues. Adv Funct Mater 24(21):3259–3267CrossRefGoogle Scholar
  141. Messersmith PB, Dalsin JL, Lee BP, Burke SA (2014) DOPA-functionalized, branched, poly(aklylene oxide) adhesives. US Patent 8,673,286Google Scholar
  142. Miller SM, Simon RJ, Ng S, Zuckermann RN, Kerr JM, Moos WH (1995) Comparison of the proteolytic susceptibilities of homologous L-amino acid, D-amino acid, and N-substituted glycine peptide and peptoid oligomers. Drug Dev Res 35(1):20–32CrossRefGoogle Scholar
  143. Mulder M, Crosier J, Dunn R (2009) Cauda equina compression by hydrogel dural sealant after a laminotomy and discectomy case report. Spine 34(4):E144–E148. doi:10.1097/Brs.0b013e31818d5427 PubMedCrossRefGoogle Scholar
  144. Murphy JL, Vollenweider L, Xu F, Lee BP (2010) Adhesive performance of biomimetic adhesive-coated biologic scaffolds. Biomacromolecules 11:2976–2984PubMedPubMedCentralCrossRefGoogle Scholar
  145. Nath N, Hyun J, Ma H, Chilkoti A (2004) Surface engineering strategies for control of protein and cell interactions. Surf Sci 570(1–2):98–110CrossRefGoogle Scholar
  146. Neto AI, Cibrao AC, Correia CR, Carvalho RR, Luz GM, Ferrer GG, Botelho G, Picart C, Alves NM, Mano JF (2014) Nanostructured polymeric coatings based on chitosan and dopamine-modified hyaluronic acid for biomedical applications. Small 10(12):2459–2469. doi: 10.1002/smll.201303568
  147. Ninan L, Monahan J, Stroshine RL, Wilker JJ, Shi R (2003) Adhesive strength of marine mussel extracts on porcine skin. Biomaterials 24(22):4091–4099PubMedCrossRefGoogle Scholar
  148. Ohman H, Vahlquist A (1994) In vivo studies concerning a pH gradient in human stratum corneum and upper epidermis. Acta Derm Venereol 74(5):375–379PubMedGoogle Scholar
  149. Olivieri MP, Loomis RE, Meyer AE, Baier RE (1990) Surface characterization of mussel adhesive protein films. J Adhes Sci Technol 4(3):197–204CrossRefGoogle Scholar
  150. Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med Cell Longev 2(5):270–278CrossRefGoogle Scholar
  151. Papov VV, Diamond TV, Biemann K, Waite JH (1995) Hydroxyarginine-containing polyphenolic proteins in the adhesive plaques of the marine mussel Mytilus edulis. J Biol Chem 270(34):20183–20192PubMedCrossRefGoogle Scholar
  152. Pardo J, Gutierrez E, Saez C, Brito M, Burzio LO (1990) Purification of adhesive proteins from mussels. Protein Expr Purif 1(2):147–150PubMedCrossRefGoogle Scholar
  153. Park JY, Yeom J, Kim JS, Lee M, Lee H, Nam YS (2013) Cell-repellant dextran coatings of porous titania using mussel adhesion chemistry. Macromol Biosci 13(11):1511–1519. doi:10.1002/mabi.201300224 PubMedCrossRefGoogle Scholar
  154. Pasche S, De Paul SM, Voros J, Spencer ND, Textor M (2003) Poly(L-lysine)-graft-poly(ethylene glycol) assembled monolayers on niobium oxide surfaces: a quantitative study of the influence of polymer interfacial architecture on resistance to protein adsorption by ToF-SIMS and in situ OWLS. Langmuir 19(22):9216–9225CrossRefGoogle Scholar
  155. Pitman MI, Menche D, Song EK, Ben-Yishay A, Gilbert D, Grande DA (1989) The use of adhesives in chondrocyte transplantation surgery: in-vivo studies. Bull Hosp Jt Dis Orthop Inst 49(2):213–220PubMedGoogle Scholar
  156. Pizer R, Babcock L (1977) Mechanism of complexation of boron acids with catechol and substituted catechols. Inorg Chem 16(7):1677–1681. doi:10.1021/Ic50173a021 CrossRefGoogle Scholar
  157. Reffitt DM, Ogston N, Jugdaohsingh R, Cheung HFJ, Evans BAJ, Thompson RPH, Powell JJ, Hampson GN (2003) Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone 32(2):127–135. doi:10.1016/s8756-3282(02)00950-x PubMedCrossRefGoogle Scholar
  158. Ren Y, Rivera JG, He L, Kulkarni H, Lee DK, Messersmith PB (2011) Facile, high efficiency immobilization of lipase enzyme on magnetic iron oxide nanoparticles via a biomimetic coating. BMC Biotechnol 11:63. doi:10.1186/1472-6750-11-63 PubMedPubMedCentralCrossRefGoogle Scholar
  159. Rodriguez R, Blesa MA, Regazzoni AE (1996) Surface Complexation at the TiO2 (anatase)/aqueous solution interface: chemisorption of catechol. J Colloid Interface Sci 177Google Scholar
  160. Ryu JH, Lee Y, Kong WH, Kim TG, Park TG, Lee H (2011) Catechol-functionalized chitosan/pluronic hydrogels for tissue adhesives and hemostatic materials. Biomacromolecules 12(7):2653–2659. doi:10.1021/bm200464x PubMedCrossRefGoogle Scholar
  161. Rzepecki LM, Hansen KM, Waite JH (1992) Characterization of a cystine-rich polyphenolic protein family from the blue mussel Mytilus edulis. Biol Bull 183(1):123–137CrossRefGoogle Scholar
  162. Schnurrer J, Lehr C-M (1996) Mucoadhesive properties of the mussel adhesive protein. Int J Pharm 141(1,2):251–256CrossRefGoogle Scholar
  163. Seo S, Das S, Zalicki PJ, Mirshafian R, Eisenbach CD, Israelachvili JN, Waite JH, Ahn BK (2015) Microphase behavior and enhanced wet-cohesion of synthetic copolyampholytes inspired by a mussel foot protein. J Am Chem Soc 137(29):9214–9217. doi:10.1021/jacs.5b03827 PubMedCrossRefGoogle Scholar
  164. Sever MJ, Wilker JJ (2004) Visible absorption spectra of metal-catecholate and metal-tironate complexes. Dalton Trans 7:1061–1072. doi:10.1039/b315811j PubMedCrossRefGoogle Scholar
  165. Shafiq Z, Cui J, Pastor-Pérez L, San Miguel V, Gropeanu RA, Serrano C, del Campo A (2012) Bioinspired Underwater Bonding and Debonding on Demand. Angew Chem Int Ed 51(18):4332–4335. doi:10.1002/anie.201108629 CrossRefGoogle Scholar
  166. Shazly TM, Baker AB, Naber JR, Bon A, Van Vliet KJ, Edelman ER (2010) Augmentation of postswelling surgical sealant potential of adhesive hydrogels. J Biomed Mater Res Part A 95A(4):1159–1169. doi:10.1002/Jbm.A.32942 CrossRefGoogle Scholar
  167. Shin H, Ruhe PQ, Mikos AG, Jansen JA (2003) In vivo bone and soft tissue response to injectable, biodegradable oligo (poly (ethylene glycol) fumarate) hydrogels. Biomaterials 24(19):3201–3211PubMedCrossRefGoogle Scholar
  168. Sileika TS, Kim H-D, Maniak P, Messersmith PB (2011) Antibacterial performance of polydopamine-modified polymer surfaces containing passive and active components. ACS Appl Mater Interfaces 3(12):4602–4610. doi:10.1021/am200978h PubMedCrossRefGoogle Scholar
  169. Sileika TS, Barrett DG, Zhang R, Lau KHA, Messersmith PB (2013) Colorless multifunctional coatings inspired by polyphenols found in tea, chocolate, and wine. Angew Chem Int Ed 52(41):10766–10770. doi:10.1002/anie.201304922 CrossRefGoogle Scholar
  170. Silverman HG, Roberto FF (2006) Cloning and expression of recombinant adhesive protein Mefp-1 of the blue mussel, Mytilus edulis. Google PatentsGoogle Scholar
  171. Skelton S, Bostwick M, O'Connor K, Konst S, Casey S, Lee BP (2013) Biomimetic adhesive containing nanocomposite hydrogel with enhanced materials properties. Soft Matter 9(14):3825–3833CrossRefGoogle Scholar
  172. Sofia SJ, Premnath V, Merrill EW (1998) Poly(ethylene oxide) grafted to silicon surfaces: grafting density and protein adsorption. Macromolecules 31:5059–5070PubMedCrossRefGoogle Scholar
  173. Soller BR, Micheels RH, Coen J, Parikh B, Chu L, Hsi C (1996) Feasibility of non-invasive measurement of tissue pH using near-infrared reflectance spectroscopy. J Clin Monit Comput 12(5):387–395. doi:10.1007/bf02077636 CrossRefGoogle Scholar
  174. Soller BR, Khan T, Favreau J, Hsi C, Puyana JC, Heard SO (2003) Investigation of muscle pH as an indicator of liver pH and injury from hemorrhagic shock. J Surg Res 114(2):195–201. doi:10.1016/S0022-4804(03)00251-8 PubMedCrossRefGoogle Scholar
  175. Soriaga MP, Hubbard AT (1982) Determination of the orientation of aromatic molecules adsorbed on platinum electrodes. The effect of solute concentration. J Am Chem Soc 104(14):3937–3945CrossRefGoogle Scholar
  176. Statz AR, Meagher RJ, Barron AE, Messersmith PB (2005) New peptidomimetic polymers for antifouling surfaces. J Am Chem Soc 127(22):7972–7973PubMedCrossRefGoogle Scholar
  177. Statz AR, Barron AE, Messersmith PB (2008a) Protein, cell and bacterial fouling resistance of polypeptoid-modified surfaces: effect of side-chain chemistry. Soft Matter 4:131–139PubMedPubMedCentralCrossRefGoogle Scholar
  178. Statz AR, Park JP, Chongsiriwatana NP, Barron AE, Messersmith PB (2008b) Surface-immobilized antimicrobial peptoids. Biofouling 24(6):439–448PubMedPubMedCentralCrossRefGoogle Scholar
  179. Strausberg RL, Link RP (1990) Protein-based medical adhesives. Trends Biotechnol 8(2):53–57PubMedCrossRefGoogle Scholar
  180. Strausberg RL, Anderson DM, Filpula D, Finkelman M, Link R, McCandliss R, Orndorff SA, Strausberg SL, Wei T (1989) Development of a microbial system for production of mussel adhesive protein. In: Adhesives from renewable resources, ACS symposium series, vol 385. pp 453–464Google Scholar
  181. Su J, Chen F, Cryns VL, Messersmith PB (2011) Catechol polymers for pH-responsive, targeted drug delivery to cancer cells. J Am Chem Soc 133(31):11850–11853. doi:10.1021/ja203077x PubMedPubMedCentralCrossRefGoogle Scholar
  182. Sun C, Waite JH (2005) Mapping chemical gradients within and along a fibrous structural tissue, mussel byssal threads. J Biol Chem 280(47):39332–39336. doi:10.1074/jbc.M508674200 PubMedCrossRefGoogle Scholar
  183. Sun W, Neuzil P, Kustandi TS, Oh S, Samper VD (2005) The nature of the gecko lizard adhesive force. Biophys J 89:L14–16PubMedPubMedCentralCrossRefGoogle Scholar
  184. Tatehata H, Mochizuki A, Kawashima T, Yamashita S, Yamamoto H (2000) Model polypeptide of mussel adhesive protein. I. Synthesis and adhesive studies of sequential polypeptides (X-Tyr-Lys)n and (Y-Lys)n. J Appl Polym Sci 76(6):929–937CrossRefGoogle Scholar
  185. Tatehata H, Mochizuki A, Ohkawa K, Yamada M, Yamamoto H (2001) Tissue adhesive using synthetic model adhesive proteins inspired by the marine mussel. J Adhes Sci Technol 15(9):1003–1013CrossRefGoogle Scholar
  186. Taylor SW, Chase DB, Emptage MH, Nelson MJ, Waite JH (1996) Ferric ion complexes of a DOPA-containing adhesive protein from Mytilus edulis. Inorg Chem 35:6CrossRefGoogle Scholar
  187. Thompson DW, Butterworth JT (1992) The nature of laponite and its aqueous dispersions. J Colloid Interface Sci 151(1):236–243. doi:10.1016/0021-9797(92)90254-j CrossRefGoogle Scholar
  188. Tian Y, Pesika N, Zeng HB, Rosenberg K, Zhao BX, McGuiggan P, Autumn K, Israelachvili J (2006) Adhesion and friction in gecko toe attachment and detachment. Proc Natl Acad Sci U S A 103(51):19320–19325. doi:10.1073/pnas.0608841103 PubMedPubMedCentralCrossRefGoogle Scholar
  189. Waite JH (1987) Nature’s underwater adhesive specialist. Int J Adhes Adhes 7(1):9–14CrossRefGoogle Scholar
  190. Waite JH (1991) Mussel beards: a coming of age. Chem Ind 2(September):607–611Google Scholar
  191. Waite JH (1999) Reverse engineering of bioadhesion in marine mussels. Ann N Y Acad Sci 875:301–309PubMedCrossRefGoogle Scholar
  192. Waite JH, Andersen SO (1978) 3,4-dihydroxyphenylalanine in an insoluble shell protein of Mytilus edulis. Biochim Biophys Acta 541(1):107–114CrossRefGoogle Scholar
  193. Waite JH, Qin X (2001) Polyphosphoprotein from the adhesive pads of Mytilus edulis. Biochemistry 40(9):2887–2893PubMedCrossRefGoogle Scholar
  194. Waite JH, Anderson NH, Jewhurst S, Sun C (2005) Mussell adhesion: finding the tricks worth mimicking. J Adhes 81:1–21CrossRefGoogle Scholar
  195. Wang X, Ye Q, Gao T, Liu J, Zhou F (2011) Self-assembly of catecholic macroinitiator on various substrates and surface-initiated polymerization. Langmuir 28(5):2574–2581. doi:10.1021/la204568d CrossRefGoogle Scholar
  196. Wang WN, Xu YS, Li A, Li T, Liu MM, von Klitzing R, Ober CK, Kayitmazer AB, Li L, Guo XH (2015) Zinc induced polyelectrolyte coacervate bioadhesive and its transition to a self-healing hydrogel. RSC Adv 5(82):66871–66878. doi:10.1039/c5ra11915d CrossRefGoogle Scholar
  197. Warner SC, Waite JH (1999) Expression of multiple forms of an adhesive plaque protein in an individual mussel, Mytilus edulis. Mar Biol 134(4):729–734CrossRefGoogle Scholar
  198. Wei YF, Kong JH, Yang LP, Ke L, Tan HR, Liu H, Huang YZ, Sun XW, Lu XH, Du HJ (2013) Polydopamine-assisted decoration of ZnO nanorods with Ag nanoparticles: an improved photoelectrochemical anode. J Mater Chem A 1(16):5045–5052. doi:10.1039/C3ta10499k CrossRefGoogle Scholar
  199. Westwood G, Horton TN, Wilker JJ (2007) Simplified polymer mimics of cross-linking adhesive proteins. Macromolecules 40(11):3960–3964CrossRefGoogle Scholar
  200. White JD, Wilker JJ (2011) Underwater bonding with charged polymer mimics of marine mussel adhesive proteins. Macromolecules 44(13):5085–5088CrossRefGoogle Scholar
  201. Yamamoto H (1987) Synthesis and adhesive studies of marine polypeptides. J Chem Soc Perkin Trans 1(3):613–618CrossRefGoogle Scholar
  202. Yamamoto H (1995) Marine adhesive proteins and some biotechnological applications. Biotechnol Genet Eng Rev 13:133–165CrossRefGoogle Scholar
  203. Yamamoto H, Tatehata H (1995) Oxidation of synthetic precursors of adhesive proteins from mytilid bivalves using tyrosinase. J Mar Biotechnol 2(2):95–100Google Scholar
  204. Yamamoto H, Ogawa T, Ohkawa K (1995) Wettability and adhesion of synthetic marine adhesive proteins and related model compounds. J Colloid Interface Sci 176(1):111–116CrossRefGoogle Scholar
  205. Yang SH, Kang SM, Lee KB, Chung TD, Lee H, Choi IS (2011) Mussel-inspired encapsulation and functionalization of individual yeast cells. J Am Chem Soc 133(9):2795–2797. doi:10.1021/ja1100189 PubMedCrossRefGoogle Scholar
  206. Yang X, Zhu LP, Tada S, Zhou D, Kitajima T, Isoshima T, Yoshida Y, Nakamura M, Yan WQ, Ito Y (2014) Mussel-inspired human gelatin nanocoating for creating biologically adhesive surfaces. Int J Nanomed 9:2753–2765. doi:10.2147/Ijn.S60624 Google Scholar
  207. Ye Q, Wang X, Li S, Zhou F (2010) Surface-initiated ring-opening metathesis polymerization of pentadecafluorooctyl-5-norbornene-2-carboxylate from variable substrates modified with sticky biomimic initiator. Macromolecules 43(13):5554–5560. doi:10.1021/ma100479x CrossRefGoogle Scholar
  208. You I, Kang SM, Byun Y, Lee H (2011) Enhancement of blood compatibility of poly(urethane) substrates by mussel-inspired adhesive heparin coating. Bioconjug Chem 22(7):1264–1269. doi:10.1021/Bc2000534 PubMedCrossRefGoogle Scholar
  209. Young GA, Crisp DJ (1982) Marine animals and adhesion. In: Allen KW (ed) Adhesion-6. Applied Science Publishers, Barkling, UK, pp 279–313Google Scholar
  210. Yu M, Deming TJ (1998) Synthetic polypeptide mimics of marine adhesives. Macromolecules 31(15):4739–4745PubMedCrossRefGoogle Scholar
  211. Yu M, Hwang J, Deming TJ (1999) Role of L-3,4-dihydroxyphenylanine in mussel adhesive proteins. J Am Chem Soc 121(24):5825–5826CrossRefGoogle Scholar
  212. Yurdumakan B, Raravikar NR, Ajayan PM, Dhinojwala A (2005) Synthetic gecko foot-hairs from multiwalled carbon nanotubes. Chem Commun 30:3799–3801CrossRefGoogle Scholar
  213. Zhang MQ, Desai T, Ferrari M (1998) Proteins and cells on PEG immobilized silicon surfaces. Biomaterials 19(10):953–960PubMedCrossRefGoogle Scholar
  214. Zhang YC, Thomas Y, Kim E, Payne GF (2012) pH- and Voltage-responsive chitosan hydrogel through covalent cross-linking with catechol. J Phys Chem B 116(5):1579–1585. doi:10.1021/Jp210043w PubMedCrossRefGoogle Scholar
  215. Zhang M, Gao B, Varnoosfaderani S, Hebard A, Yao Y, Inyang M (2013) Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresour Technol 130:457–462. doi:10.1016/j.biortech.2012.11.132 PubMedCrossRefGoogle Scholar
  216. Zhao H, Waite JH (2006) Linking adhesive and structural proteins in the attachment plaque of Mytilus californianus. J Biol Chem 281(36):26150–26158. doi:10.1074/jbc.M604357200 PubMedCrossRefGoogle Scholar
  217. Zhong C, Gurry T, Cheng AA, Downey J, Deng Z, Stultz CM, Lu TK (2014) Strong underwater adhesives made by self-assembling multi-protein nanofibres. Nat Nano 9(10):858–866. doi:10.1038/nnano.2014.199, http://www.nature.com/nnano/journal/v9/n10/abs/nnano.2014.199.html#supplementary-information CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Yuan Liu
    • 1
  • Hao Meng
    • 1
  • Phillip B. Messersmith
    • 2
  • Bruce P. Lee
    • 1
  • Jeffrey L. Dalsin
    • 3
  1. 1.Department of Biomedical EngineeringMichigan Technological UniversityHoughtonUSA
  2. 2.Departments of Materials Science and Engineering and BioengineeringUniversity of California, BerkeleyBerkeleyUSA
  3. 3.Department of Biomedical EngineeringNorthwestern UniversityEvanstonUSA

Personalised recommendations