Unraveling the Design Principles of Black Widow’s Gumfoot Glue

  • Dharamdeep Jain
  • Todd A. Blackledge
  • Toshikazu Miyoshi
  • Ali DhinojwalaEmail author


Prey capture adhesives produced by web-building spiders have intrigued humans for many years and provide important insights to develop adhesives that work in humid environments. These humidity-responsive glues are laid down by spiders in various types of webs, primarily orb webs and cobwebs. The formation and function of viscid glue in the capture spirals of orb webs is well-studied compared to the vertically aligned gumfoot glue strands in cobwebs. While the glue droplets in cobwebs contain some peptides, they act as viscoelastic liquids, rather than viscoelastic solids, and the cause of glue stickiness is poorly understood. However, the recent discovery of glycoproteins and hygroscopic salts in the gumfoot adhesives brings a new perspective to explain the mechanism of adhesion of these microscopic droplets. In this chapter, we summarize the current state of our understanding of the chemical composition, morphology, and mechanism of adhesion of gumfoot glue threads. Additionally, we present molecular evidence that both salts and glycoproteins are important for strong adhesion in a humid environment and show how understanding the mechanism of cobweb spider adhesives will help in designing materials that are active and functional in high humidity.


Silk Fiber Organic Salt Black Widow Major Ampullate Hygroscopic Salt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to express gratitude to the National Science Foundation (NSF) for funding the NMR studies on gumfoot silk, Bill Hsuing for the help in the collection of major ampullate silk from silk glands of Black Widow, Sarah Han and Dr. Matjaz Gregoric for pictures in Fig.13.1 and Fig.13.3 respectively and Dr. Wei Chen for the assistance in solid-state NMR experiments.


  1. Amarpuri G, Zhang C, Diaz C, Opell BD, Blackledge TA, Dhinojwala A (2015) Spiders tune glue viscosity to maximize adhesion. ACS Nano 9:11472–11478CrossRefPubMedGoogle Scholar
  2. Argintean S, Chen J, Kim M, Moore AMF (2006) Resilient silk captures prey in black widow cobwebs. Appl Phys A 82:235–241CrossRefGoogle Scholar
  3. Benjamin SP, Zschokke S (2003) Webs of theridiid spiders: construction, structure and evolution. Biol J Linn Soc 78:293–305CrossRefGoogle Scholar
  4. Blackledge TA, Zevenbergen JM (2007) Condition-dependent spider web architecture in the western black widow, Latrodectus hesperus. Anim Behav 73:855–864CrossRefGoogle Scholar
  5. Blackledge TA, Coddington J, Gillespie R (2003) Are three‐dimensional spider webs defensive adaptations? Ecol Lett 6:13–18CrossRefGoogle Scholar
  6. Blackledge TA, Summers AP, Hayashi CY (2005a) Gumfooted lines in black widow cobwebs and the mechanical properties of spider capture silk. Zoology (Jena) 108:41–46CrossRefGoogle Scholar
  7. Blackledge TA, Swindeman JE, Hayashi CY (2005b) Quasistatic and continuous dynamic characterization of the mechanical properties of silk from the cobweb of the black widow spider Latrodectus hesperus. J Exp Biol 208:1937–1949CrossRefPubMedGoogle Scholar
  8. Blackledge TA, Scharff N, Coddington JA, Szüts T, Wenzel JW, Hayashi CY, Agnarsson I (2009) Reconstructing web evolution and spider diversification in the molecular era. Proc Natl Acad Sci USA 106:5229–5234CrossRefPubMedPubMedCentralGoogle Scholar
  9. Blasingame E, Tuton-Blasingame T, Larkin L, Falick AM, Zhao L, Fong J, Vaidyanathan V, Visperas A, Geurts P, Hu X, La Mattina C, Vierra C (2009) Pyriform spidroin 1, a novel member of the silk gene family that anchors dragline silk fibers in attachment discs of the black widow spider, Latrodectus hesperus. J Biol Chem 284:29097–29108CrossRefPubMedPubMedCentralGoogle Scholar
  10. Casem M, Turner D, Houchin K (1999) Protein and amino acid composition of silks from the cob weaver, Latrodectus hesperus (black widow). Int J Biol Macromol 24:103–108CrossRefPubMedGoogle Scholar
  11. Chamberlin R, Ivie W (1935) The black widow spider and its varieties in the United States. Bull Univ Utah 25:1–29Google Scholar
  12. Creager MS, Jenkins JE, Thagard-Yeaman LA, Brooks AE, Jones JA, Lewis RV, Holland GP, Yarger JL (2010) Solid-state NMR comparison of various spiders’ dragline silk fiber. Biomacromolecules 11:2039–2043CrossRefPubMedPubMedCentralGoogle Scholar
  13. d’Amour F, Becker F, van Riper W (1936) The black widow spider. Q Rev Biol 11:123–160CrossRefGoogle Scholar
  14. Eberhard WG, Agnarsson I, Levi HW (2008) Web forms and the phylogeny of theridiid spiders (Araneae: Theridiidae): chaos from order. Syst Biodivers 6:415–475CrossRefGoogle Scholar
  15. Finkelstein A, Rubin LL, Tzeng MC (1976) Black widow spider venom: effect of purified toxin on lipid bilayer membranes. Science 193:1009–1011CrossRefPubMedGoogle Scholar
  16. Foelix RF (1982) Biology of spiders. Harvard University Press, HarvardGoogle Scholar
  17. Frontali N, Ceccarelli B, Gorio A, Mauro A, Siekevitz P, Tzeng MC, Hurlbut WP (1976) Purification from black widow spider venom of a protein factor causing the depletion of synaptic vesicles at neuromuscular junctions. J Cell Biol 68:462–479CrossRefPubMedGoogle Scholar
  18. Garb JE, González A, Gillespie RG (2004) The black widow spider genus Latrodectus (Araneae: Theridiidae): phylogeny, biogeography, and invasion history. Mol Phylogenet Evol 31:1127–1142CrossRefPubMedGoogle Scholar
  19. Griswold CE, Coddington JA, Hormiga G, Scharff N (1998) Phylogeny of the orb-web building spiders (Araneae, Orbiculariae: Deinopoidea, Araneoidea). Zool J Linn Soc 123:1–99CrossRefGoogle Scholar
  20. Hu X, Kohler K, Falick AM, Moore AMF, Jones PR, Sparkman OD, Vierra C (2005a) Egg case protein-1. A new class of silk proteins with fibroin-like properties from the spider Latrodectus hesperus. J Biol Chem 280:21220–21230CrossRefPubMedGoogle Scholar
  21. Hu X, Lawrence B, Kohler K, Falick AM, Moore AMF, McMullen E, Jones PR, Vierra C (2005b) Araneoid egg case silk: a fibroin with novel ensemble repeat units from the black widow spider, Latrodectus hesperus. Biochemistry 44:10020–10027CrossRefPubMedGoogle Scholar
  22. Hu X, Yuan J, Wang X, Vasanthavada K, Falick AM, Jones PR, La Mattina C, Vierra CA (2007) Analysis of aqueous glue coating proteins on the silk fibers of the cob weaver, Latrodectus hesperus. Biochemistry 46:3294–3303CrossRefPubMedGoogle Scholar
  23. Jain D, Zhang C, Cool LR, Blackledge TA, Wesdemiotis C, Miyoshi T, Dhinojwala A (2015) Composition and function of spider glues maintained during the evolution of cobwebs. Biomacromolecules 16:3373–3380CrossRefPubMedGoogle Scholar
  24. Jenkins J, Sampath S, Butler E, Kim J, Henning RW, Holland GP, Yarger JL (2013) Characterizing the secondary protein structure of black widow dragline silk using solid-state NMR and X-ray diffraction. Biomacromolecules 14:3472–3483CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kelly S (1989) The chemical composition of the defensive secretion of the spider Latrodectus mactans (Fabricius). MS Thesis, University of New HampshireGoogle Scholar
  26. Kovoor J (1977) Données histochimiques sur les glandes séricigènes de la veuve noire Latrodectus mactans Fabr. (Araneae, Theridiidae). Ann Sci Nat Zool Biol Anim 12e Sér 19:63–87Google Scholar
  27. Kovoor J (1987) Comparative structure and histochemistry of silk-producing organs in arachnids. In: Nentwig W (ed) Ecophysiology of spiders. Springer, BerlinGoogle Scholar
  28. Lawrence BA, Vierra CA, Moore AMF (2004) Molecular and mechanical properties of major ampullate silk of the black widow spider, Latrodectus hesperus. Biomacromolecules 5:689–695CrossRefPubMedGoogle Scholar
  29. Liu Y, Sponner A, Porter D, Vollrath F (2008) Proline and processing of spider silks. Biomacromolecules 9:116–121CrossRefPubMedGoogle Scholar
  30. Meldolesi J, Scheer H, Madeddu L, Wanke E (1986) Mechanism of action of α-latrotoxin: the presynaptic stimulatory toxin of the black widow spider venom. Trends Pharmacol Sci 7:151–155CrossRefGoogle Scholar
  31. Moore AMF, Tran K (1999) Material properties of cobweb silk from the black widow spider Latrodectus hesperus. Int J Biol Macromol 24:277–282CrossRefPubMedGoogle Scholar
  32. Opell BD, Karinshak SE, Sigler MA (2011) Humidity affects the extensibility of an orb-weaving spider’s viscous thread droplets. J Exp Biol 214:2988–2993CrossRefPubMedGoogle Scholar
  33. Opell BD, Karinshak SE, Sigler MA (2013) Environmental response and adaptation of glycoprotein glue within the droplets of viscous prey capture threads from araneoid spider orb-webs. J Exp Biol 216:3023–3034CrossRefPubMedGoogle Scholar
  34. Sahni V, Blackledge TA, Dhinojwala A (2010) Viscoelastic solids explain spider web stickiness. Nat Commun 1:19CrossRefPubMedGoogle Scholar
  35. Sahni V, Blackledge TA, Dhinojwala A (2011a) A review on spider silk adhesion. J Adhes 87:595–614CrossRefGoogle Scholar
  36. Sahni V, Blackledge TA, Dhinojwala A (2011b) Changes in the adhesive properties of spider aggregate glue during the evolution of cobwebs. Sci Rep 1:41CrossRefPubMedPubMedCentralGoogle Scholar
  37. Sahni V, Harris J, Blackledge TA, Dhinojwala A (2012) Cobweb-weaving spiders produce different attachment discs for locomotion and prey capture. Nat Commun 3:1106CrossRefPubMedGoogle Scholar
  38. Sahni V, Miyoshi T, Chen K, Jain D, Blamires SJ, Blackledge TA, Dhinojwala A (2014) Direct solvation of glycoproteins by salts in spider silk glues enhances adhesion and helps to explain the evolution of modern spider orb webs. Biomacromolecules 15:1225–1232CrossRefPubMedGoogle Scholar
  39. Salles HC, Volsi ECFR, Marques MR, Souza BM, dos Santos LD, Tormena CF, Mendes MA, Palma MS (2006) The venomous secrets of the web droplets from the viscid spiral of the orb-weaver spider Nephila clavipes (Araneae, Tetragnathidae). Chem Biodivers 3:727–741CrossRefPubMedGoogle Scholar
  40. Schulz S (1997) The chemistry of spider toxins and spider silk. Angew Chem Int Ed Engl 36:314–326CrossRefGoogle Scholar
  41. Schulz S (1999) Structural diversity of surface lipids from spiders. In: Diederichsen U, Lindhorst TK, Westermann B, Wessjohann LA (eds) Bioorganic chemistry: highlights and new aspects. Wiley-VCH, WeinheimGoogle Scholar
  42. Schulz S (2001) Composition of the silk lipids of the spider Nephila clavipes. Lipids 36:637–647CrossRefPubMedGoogle Scholar
  43. Swanson BO, Blackledge TA, Beltrán J, Hayashi CY (2006) Variation in the material properties of spider dragline silk across species. Appl Phys A 82:213–218CrossRefGoogle Scholar
  44. Townley MA, Tillinghast EK (2013) Aggregate silk gland secretions of araneoid spiders. In: Nentwig W (ed) Spider ecophysiology. Springer, Berlin, pp 283–302CrossRefGoogle Scholar
  45. Townley MA, Bernstein DT, Gallagher KS, Tillinghast EK (1991) Comparative study of orb web hygroscopicity and adhesive spiral composition in three araneid spiders. J Exp Zool 259:154–165CrossRefGoogle Scholar
  46. Townley MA, Pu Q, Zercher CK, Neefus CD, Tillinghast EK (2012) Small organic solutes in sticky droplets from orb webs of the spider Zygiella atrica (Araneae; Araneidae): β-alaninamide is a novel and abundant component. Chem Biodivers 9:2159–2174CrossRefPubMedGoogle Scholar
  47. Ushkaryov YA, Volynski KE, Ashton AC (2004) The multiple actions of black widow spider toxins and their selective use in neurosecretion studies. Toxicon 43:527–542CrossRefPubMedGoogle Scholar
  48. Vasanthavada K, Hu X, Falick AM, La Mattina C, Moore AMF, Jones PR, Yee R, Reza R, Tuton T, Vierra C (2007) Aciniform spidroin, a constituent of egg case sacs and wrapping silk fibers from the black widow spider Latrodectus hesperus. J Biol Chem 282:35088–35097CrossRefPubMedGoogle Scholar
  49. Vasanthavada K, Hu X, Tuton-Blasingame T, Hsia Y, Sampath S, Pacheco R, Freeark J, Falick AM, Tang S, Fong J, Kohler K, La Mattina-Hawkins C, Vierra C (2012) Spider glue proteins have distinct architectures compared with traditional spidroin family members. J Biol Chem 287:35986–35999CrossRefPubMedPubMedCentralGoogle Scholar
  50. Vollrath F, Selden P (2007) The role of behavior in the evolution of spiders, silks and webs. Annu Rev Ecol Evol Syst 38:819–846CrossRefGoogle Scholar
  51. Vollrath F, Fairbrother WJ, Williams RJ, Tillinghast EK, Bernstein DT, Gallagher KS, Townley MA (1990) Compounds in the droplets of the orb spider’s viscid spiral. Nature 345:526–527CrossRefGoogle Scholar
  52. Xu D, Yarger JL, Holland GP (2014) Exploring the backbone dynamics of native spider silk proteins in Black Widow silk glands with solution-state NMR spectroscopy. Polymer 55:3879–3885CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Dharamdeep Jain
    • 1
  • Todd A. Blackledge
    • 2
  • Toshikazu Miyoshi
    • 1
  • Ali Dhinojwala
    • 1
    Email author
  1. 1.Department of Polymer ScienceUniversity of AkronAkronUSA
  2. 2.Department of Biology, Integrated Biosciences ProgramUniversity of AkronAkronUSA

Personalised recommendations