Image-Based Identification of Plant Species Using a Model-Free Approach and Active Learning

  • Jonatan Grimm
  • Mark Hoffmann
  • Ben Stöver
  • Kai Müller
  • Volker Steinhage
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9904)

Abstract

Collection and maintenance of biodiversity data is in need for automation. We present first results of an automated and model-free approach to the species identification from herbarium specimens kept in herbaria worldwide. Methodologically, our approach relies on standard methods for the detection and description of so-called interest points and their classification into species-characteristic categories using standard supervised learning tools. To keep the approach model-free on the one hand but also offer opportunities for species identification even in very challenging cases on the other hand, we allow to induce specific knowledge about important visual cues by using concepts of active learning on demand. First encouraging results on selected fern species show recognition accuracies between 94 % and 100 %.

References

  1. 1.
    Matteo Spampani Alessio Anzivino: Hog-processing. http://hogprocessing.altervista.org. Accessed 15 Mar 2016
  2. 2.
    Backes, A.R., Casanova, D., Bruno, O.M.: Plant leaf identification based on volumetric fractal dimension. Int. J. Pattern Recogn. Artif. Intell. 23(06), 1145–1160 (2009)CrossRefGoogle Scholar
  3. 3.
    Belhumeur, P.N., et al.: Searching the world’s Herbaria: a system for visual identification of plant species. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 116–129. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005, CVPR 2005, vol. 1, pp. 886–893. IEEE (2005)Google Scholar
  5. 5.
    Goëau, H., Bonnet, P., Joly, A., Boujemaa, N., Barthélémy, D., Molino, J.-F., Birnbaum, P., Mouysset, E., Picard, M.: The imageclef 2011 plant images classi cation task. In: ImageCLEF 2011 (2011)Google Scholar
  6. 6.
    Goëau, H., Joly, A., Selmi, S., Bonnet, P., Mouysset, E., Joyeux, L., Molino, J.-F., Birnbaum, P., Bathelemy, D., Boujemaa, N.: Visual-based plant species identification from crowdsourced data. In: Proceedings of the 19th ACM International Conference on Multimedia, pp. 813–814. ACM (2011)Google Scholar
  7. 7.
    Joachims, T.: Making large scale svm learning practical. Technical report, Universität Dortmund (1999)Google Scholar
  8. 8.
    Joachims, T.: Svmlight (2008). http://svmlight.joachims.org/. Accessed 14 Nov 2015
  9. 9.
    Kadir, A., Nugroho, L.E., Susanto, A., Santosa, P.I.: Leaf classification using shape, color, and texture features (2013). arXiv preprint arXiv:1401.4447
  10. 10.
    David, G.: Lowe: distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  11. 11.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)CrossRefGoogle Scholar
  12. 12.
    Muséum national d’Histoire naturelle, Paris (France). Collection: Vascular plants (P). SpecimensGoogle Scholar
  13. 13.
    Nilsback, M.-E., Zisserman, A.: Automated flower classification over a large number of classes. In: Sixth Indian Conference on Computer Vision, Graphics and Image Processing, ICVGIP 2008, pp. 722–729. IEEE (2008)Google Scholar
  14. 14.
    O’Dell, W.: Imagej plugins: Template-matching. http://rsb.info.nih.gov/ij/plugins/template-matching.html. Accessed 15 Mar 2016
  15. 15.
    Rasband, W.S.: Imagej. U. S. National Institutes of Health, Bethesda, Maryland, USA (2015). http://imagej.nih.gov/ij/. Accessed 14 Nov 2015
  16. 16.
    Saalfeld, S.: Javasift (2015). https://github.com/axtimwalde/mpicbg. Accessed 14 Nov 2015
  17. 17.
    Settles, B.: Active learning literature survey. Computer Sciences Technical report 1648, University of Wisconsin-Madison (2010)Google Scholar
  18. 18.
    Tong, S., Koller, D.: Support vector machine active learning with applications to text classification. J. Mach. Learn. Res. 2(Nov), 45–66 (2001)MATHGoogle Scholar
  19. 19.
    Wang, X., Han, T.X., Yan, S.: An hog-lbp human detector with partial occlusion handling. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 32–39. IEEE (2009)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Jonatan Grimm
    • 1
  • Mark Hoffmann
    • 1
  • Ben Stöver
    • 2
  • Kai Müller
    • 2
  • Volker Steinhage
    • 1
  1. 1.Institute of Computer Science IVBonn UniversityBonnGermany
  2. 2.Institute for Evolution and Biodiversity and Botan. GardenMünster UniversityMünsterGermany

Personalised recommendations