Providing Built-In Counters in a Declarative Dynamic Programming Environment

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9904)

Abstract

D-FLAT is a framework for developing algorithms that solve computational problems by dynamic programming on a tree decomposition of the problem instance. The dynamic programming algorithm is specified by means of Answer-Set Programming (ASP), allowing for declarative and succinct specifications. D-FLAT traverses the tree decomposition and calls an ASP system with the provided specification at each tree decomposition node. It is thus crucial that the evaluation of the ASP program is done in an efficient way. As experiments have shown, problems that include weights or more involved arithmetics slow down this step significantly due to the grounding step in ASP, which yields large ground programs in these cases. To overcome this problem, we equip D-FLAT with built-in counters in order to shift certain computations from the ASP side to the internal part of D-FLAT. In this paper, we highlight this new feature and provide empirical benchmarks on weighted versions of the Dominating Set problem showing that our new version increases D-FLAT’s robustness and efficiency.

References

  1. 1.
    Abseher, M., Bliem, B., Charwat, G., Dusberger, F., Hecher, M., Woltran, S.: D-FLAT: progress report. Technical report DBAI-TR-2014-86, Vienna University of Technology (2014)Google Scholar
  2. 2.
    Abseher, M., Bliem, B., Charwat, G., Dusberger, F., Hecher, M., Woltran, S.: The D-FLAT system for dynamic programming on tree decompositions. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS, vol. 8761, pp. 558–572. Springer, Heidelberg (2014)Google Scholar
  3. 3.
    Abseher, M., Bliem, B., Charwat, G., Dusberger, F., Woltran, S.: Computing secure sets in graphs using answer set programming. J. Logic Comput. (2016). Accepted for publicationGoogle Scholar
  4. 4.
    Abseher, M., Musliu, N., Woltran, S.: Improving the efficiency of dynamic programming on tree decompositions via machine learning. Technical report DBAI-TR-2016-94, TU Wien (2016). http://www.dbai.tuwien.ac.at/research/report/dbai-tr-2016-94.pdf
  5. 5.
    Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM J. Algebraic Discrete Methods 8(2), 277–284 (1987)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bliem, B., Kaufmann, B., Schaub, T., Woltran, S.: ASP for anytime dynamic programming on tree decompositions. In: Proceedings of the IJCAI (2016). Accepted for publicationGoogle Scholar
  7. 7.
    Bliem, B., Morak, M., Woltran, S.: D-FLAT: declarative problem solving using tree decompositions and answer-set programming. TPLP 12(4–5), 445–464 (2012)MathSciNetMATHGoogle Scholar
  8. 8.
    Bliem, B., Pichler, R., Woltran, S.: Declarative dynamic programming as an alternative realization of Courcelle’s theorem. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 28–40. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Hans, L.: Bodlaender.: a tourist guide through treewidth. Acta Cybern. 11(1–2), 1–22 (1993)MATHGoogle Scholar
  10. 10.
    Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Bodlaender, H.L., Koster, A.M.C.A.: Treewidth computations I. Upper bounds. Inf. Comput. 208(3), 259–275 (2010)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. Commun. ACM 54(12), 92–103 (2011)CrossRefGoogle Scholar
  13. 13.
    Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Heidelberg (2015)CrossRefMATHGoogle Scholar
  15. 15.
    Dechter, R.: Constraint Processing. Morgan Kaufmann, Burlington (2003)MATHGoogle Scholar
  16. 16.
    Dermaku, A., Ganzow, T., Gottlob, G., McMahan, B., Musliu, N., Samer, M.: Heuristic methods for hypertree decomposition. In: Gelbukh, A., Morales, E.F. (eds.) MICAI 2008. LNCS (LNAI), vol. 5317, pp. 1–11. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, New York (1999)CrossRefGoogle Scholar
  18. 18.
    Gebser, M., Kaminski, R., Kaufmann, B., Lindauer, M., Ostrowski, M., Romero, J., Schaub, T., Thiele, S.: Potassco User Guide 2.0. (2015). https://sourceforge.net/projects/potassco/files/guide/2.0/guide-2.0.pdf
  19. 19.
    Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers, San Rafael (2012)Google Scholar
  20. 20.
    Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider, M.T.: Potassco: the potsdam answer set solving collection. AI Commun. 24(2), 107–124 (2011)MathSciNetMATHGoogle Scholar
  21. 21.
    Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Gener. Comput. 9(3/4), 365–386 (1991)CrossRefMATHGoogle Scholar
  22. 22.
    Lierler, Y.: On the relation of constraint answer set programming languages and algorithms. In: Proceedings of the AAAI, pp. 521–527. AAAI Press (2012)Google Scholar
  23. 23.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and its Applications. OUP, Oxford (2006)CrossRefGoogle Scholar
  24. 24.
    Ostrowski, M., Schaub, T.: ASP modulo CSP: the Clingcon system. TPLP 12(4–5), 485–503 (2012)MathSciNetMATHGoogle Scholar
  25. 25.
    Robertson, N., Seymour, P.D.: Graph minors. III. Planar tree-width. J. Comb. Theory Ser. B 36(1), 49–64 (1984)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Michael Abseher
    • 1
  • Marius Moldovan
    • 1
  • Stefan Woltran
    • 1
  1. 1.Institute of Information Systems 184/2TU WienViennaAustria

Personalised recommendations