GraCT: A Grammar Based Compressed Representation of Trajectories

  • Nieves R. Brisaboa
  • Adrián Gómez-Brandón
  • Gonzalo Navarro
  • José R. Paramá
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9954)

Abstract

We present a compressed data structure to store free trajectories of moving objects (ships over the sea, for example) allowing spatio-temporal queries. Our method, GraCT, uses a \(k^2\)-tree to store the absolute positions of all objects at regular time intervals (snapshots), whereas the positions between snapshots are represented as logs of relative movements compressed with Re-Pair. Our experimental evaluation shows important savings in space and time with respect to a fair baseline.

References

  1. 1.
    Brisaboa, N., Ladra, S., Navarro, G.: DACs: bringing direct access to variable-length codes. Inf. Process. Manag. 49(1), 392–404 (2013)CrossRefGoogle Scholar
  2. 2.
    Brisaboa, N.R., Fariña, A., Navarro, G., Param, J.R.: Lightweight natural language text compression. Inf. Retrieval 10(1), 1–33 (2007)CrossRefGoogle Scholar
  3. 3.
    Brisaboa, N.R., Ladra, S., Navarro, G.: Compact representation of web graphs with extended functionality. Inf. Syst. 39(1), 152–174 (2014)CrossRefGoogle Scholar
  4. 4.
    Chakka, V.P., Everspaugh, A., Patel, J.M.: Indexing large trajectory data sets with SETI. In: Proceedings of the conference on innovative data systems research, CIDR 2003 (2003). http://www-db.cs.wisc.edu/cidr/cidr2003/program/p.15.pdf
  5. 5.
    Gutiérrez, G.A., Navarro, G., Rodríguez, M.A., González, A.F., Orellana, J.: A spatio-temporal access method based on snapshots and events. In: GIS, pp. 115–124. ACM (2005)Google Scholar
  6. 6.
    Hadjieleftheriou, M., Kollios, G., Tsotras, V.J., Gunopulos, D.: Efficient indexing of spatiotemporal objects. In: Jensen, C.S., Jeffery, K., Pokorný, J., Šaltenis, S., Bertino, E., Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 251–268. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Jacobson, G.: Space-efficient static trees and graphs. In: IEEE Symposium on Foundations of Computer Science (FOCS), pp. 549–554 (1989)Google Scholar
  8. 8.
    Knuth, E.: Efficient representation of perm groups. Combinatorica 11, 33–43 (1991)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Larsson, N.J., Moffat, A.: Off-line dictionary-based compression. Proc. IEEE 88(11), 1722–1732 (2000)CrossRefGoogle Scholar
  10. 10.
    Munro, J.I., Raman, R., Raman, V., Rao, S.: Succinct representations of permutations and functions. Theor. Comput. Sci. 438, 74–88 (2012)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Nascimento, M.A., Silva, J.R.O.: Towards historical R-trees. In: George, K.M., Lamont, G.B. (eds.) Proceedings of the 1998 ACM Symposium on Applied Computing, SAC 1998, pp. 235–240. ACM (1998). http://doi.acm.org/10.1145/330560
  12. 12.
    Rasetic, S., Sander, J., Elding, J., Nascimento, M.A.: A trajectory splitting model for efficient spatio-temporal indexing. In: Proceedings of the 31st International Conference on Very Large Data Bases, pp. 934–945. VLDB Endowment (2005)Google Scholar
  13. 13.
    Tao, Y., Papadias, D.: MV3R-tree: a spatio-temporal access method for timestamp and interval queries. In: Apers, P.M.G., Atzeni, P., Ceri, S., Paraboschi, S., Ramamohanarao, K., Snodgrass, R.T. (eds.) Proceedings of 27th International Conference on Very Large Data Bases, VLDB 2001, pp. 431–440. Morgan Kaufmann (2001)Google Scholar
  14. 14.
    Vazirgiannis, M., Theodoridis, Y., Sellis, T.K.: Spatio-temporal composition and indexing for large multimedia applications. ACM Multimedia Syst. J. 6(4), 284–298 (1998)CrossRefGoogle Scholar
  15. 15.
    Wang, L., Zheng, Y., Xie, X., Ma, W.Y.: A flexible spatio-temporal indexing scheme for large-scale GPS track retrieval. In: Mobile Data Management, pp. 1–8. IEEE (2008)Google Scholar
  16. 16.
    Worboys, M.F.: Event-oriented approaches to geographic phenomena. Int. J. Geogr. Inf. Sci. 19(1), 1–28 (2005)CrossRefGoogle Scholar
  17. 17.
    Xu, X., Han, J., Lu, W.: RT-tree: an improved R-tree index structure for spatiotemporal databases. In: Proceedings of the 4th International Symposium on Spatial Data Handling, vol. 2, pp. 1040–1049 (1990)Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Nieves R. Brisaboa
    • 1
  • Adrián Gómez-Brandón
    • 1
  • Gonzalo Navarro
    • 2
  • José R. Paramá
    • 1
  1. 1.Depto. de ComputaciónUniversidade da CoruñaCoruñaSpain
  2. 2.Department of Computer ScienceUniversity of ChileSantiagoChile

Personalised recommendations