Advertisement

Radionuclide Imaging of Pulmonary and Thymic Neuroendocrine Tumors

  • Sellam Karunanithi
  • Ganesh Kumar
  • Rakesh KumarEmail author
Chapter
  • 900 Downloads
Part of the Contemporary Endocrinology book series (COE)

Abstract

Pulmonary neuroendocrine tumors (NETs) are an uncommon group of pulmonary neoplasms that are typically characterized by neuroendocrine differentiation with relatively indolent clinical behavior. The spectrum of pulmonary NETs ranges from typical carcinoid tumors, which are relatively benign, to highly aggressive small cell carcinoma. Thymic NETs are uncommon but malignant tumors of the thymus gland which are typically characterized by aggressive behavior and malignant potential. This chapter will emphasize current and emerging knowledge of functional imaging options on pulmonary and thymic NETs.

Keywords

Neuroendocrine Carcinoid Thymus Bronchopulmonary Somatostatin receptor PET/CT 68Ga 

References

  1. 1.
    Fink G, Krelbaum T, Yellin A, Bendayan D, Saute M, Glazer M, et al. Pulmonary carcinoid: presentation, diagnosis, and outcome in 142 cases in Israel and review of 640 cases from the literature. Chest. 2001;119(6):1647–51.CrossRefPubMedGoogle Scholar
  2. 2.
    Travis WD. Advances in neuroendocrine lung tumors. Ann Oncol. 2010;21(Supplement 7):vii65–71.CrossRefPubMedGoogle Scholar
  3. 3.
    Tsai H-J, Wu C-C, Tsai C-R, Lin S-F, Chen L-T, Chang JS. The epidemiology of neuroendocrine tumors in Taiwan: A Nation-Wide Cancer Registry-Based Study. Gorlova OY, editor. PLoS ONE. 2013;8(4):e62487.Google Scholar
  4. 4.
    Goto K, Kodama T, Matsuno Y, Yokose T, Asamura H, Kamiya N, et al. Clinicopathologic and DNA cytometric analysis of carcinoid tumors of the thymus. Mod Pathol Off J U S Can Acad Pathol Inc. 2001;14(10):985–94.Google Scholar
  5. 5.
    Moran CA, Suster S. Neuroendocrine carcinomas (carcinoid tumor) of the thymus. A clinicopathologic analysis of 80 cases. Am J Clin Pathol. 2000;114(1):100–10.CrossRefPubMedGoogle Scholar
  6. 6.
    Valli M, Fabris GA, Dewar A, Chikte S, Fisher C, Corrin B, et al. Atypical carcinoid tumour of the thymus: a study of eight cases. Histopathology. 1994;24(4):371–5.CrossRefPubMedGoogle Scholar
  7. 7.
    Cooper WA, Thourani VH, Gal AA, Lee RB, Mansour KA, Miller JI. The surgical spectrum of pulmonary neuroendocrine neoplasms. Chest. 2001;119(1):14–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Teh BT. Thymic carcinoids in multiple endocrine neoplasia type 1. J Intern Med. 1998;243(6):501–4.CrossRefPubMedGoogle Scholar
  9. 9.
    Teh BT, Zedenius J, Kytölä S, Skogseid B, Trotter J, Choplin H, et al. Thymic carcinoids in multiple endocrine neoplasia type 1. Ann Surg. 1998;228(1):99–105.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Travis WD, World Health Organization, International Agency for Research on Cancer, International Association for the Study of Lung Cancer, International Academy of Pathology, editors. Pathology and genetics of tumours of the lung, pleura, thymus and heart. Lyon/Oxford: IARC Press/Oxford University Press (distributor); 2004. p. 344.Google Scholar
  11. 11.
    Modlin IM, Lye KD, Kidd M. A 5-decade analysis of 13,715 carcinoid tumors. Cancer. 2003;97(4):934–59.CrossRefPubMedGoogle Scholar
  12. 12.
    Harpole DH, Feldman JM, Buchanan S, Young WG, Wolfe WG. Bronchial carcinoid tumors: a retrospective analysis of 126 patients. Ann Thorac Surg. 1992;54(1):50–4; discussion 54–5.CrossRefPubMedGoogle Scholar
  13. 13.
    Filosso PL, Rena O, Donati G, Casadio C, Ruffini E, Papalia E, et al. Bronchial carcinoid tumors: surgical management and long-term outcome. J Thorac Cardiovasc Surg. 2002;123(2):303–9.CrossRefPubMedGoogle Scholar
  14. 14.
    El Jamal M, Nicholson AG, Goldstraw P. The feasibility of conservative resection for carcinoid tumours: is pneumonectomy ever necessary for uncomplicated cases? Eur J Cardiothorac Surg Off J Eur Assoc Cardiothorac Surg. 2000;18(3):301–6.CrossRefGoogle Scholar
  15. 15.
    McCaughan BC, Martini N, Bains MS. Bronchial carcinoids. Review of 124 cases. J Thorac Cardiovasc Surg. 1985;89(1):8–17.PubMedGoogle Scholar
  16. 16.
    Rosado de Christenson ML, Abbott GF, Kirejczyk WM, Galvin JR, Travis WD. Thoracic carcinoids: radiologic-pathologic correlation. Radiogr Rev Publ Radiol Soc N Am Inc. 1999;19(3):707–36.Google Scholar
  17. 17.
    Ducrocq X, Thomas P, Massard G, Barsotti P, Giudicelli R, Fuentes P, et al. Operative risk and prognostic factors of typical bronchial carcinoid tumors. Ann Thorac Surg. 1998;65(5):1410–4.CrossRefPubMedGoogle Scholar
  18. 18.
    Thomas CF, Tazelaar HD, Jett JR. Typical and atypical pulmonary carcinoids : outcome in patients presenting with regional lymph node involvement. Chest. 2001;119(4):1143–50.CrossRefPubMedGoogle Scholar
  19. 19.
    Marchevsky AM, Walts AE. Diffuse idiopathic pulmonary neuroendocrine cell hyperplasia (DIPNECH). Semin Diagn Pathol. 2015;32(6):438–44.CrossRefPubMedGoogle Scholar
  20. 20.
    Lauriola L, Erlandson RA, Rosai J. Neuroendocrine differentiation is a common feature of thymic carcinoma. Am J Surg Pathol. 1998;22(9):1059–66.CrossRefPubMedGoogle Scholar
  21. 21.
    Cho KJ, Ha CW, Koh JS, Zo JI, Jang JJ. Thymic carcinoid tumor combined with thymoma – neuroendocrine differentiation in thymoma? J Korean Med Sci. 1993;8(6):458–63.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Wick MR, Ritter JH. Neuroendocrine neoplasms: evolving concepts and terminology. Curr Diagn Pathol. 2002;8(2):102–12.CrossRefGoogle Scholar
  23. 23.
    Travis WD, Linnoila RI, Tsokos MG, Hitchcock CL, Cutler GB, Nieman L, et al. Neuroendocrine tumors of the lung with proposed criteria for large-cell neuroendocrine carcinoma. An ultrastructural, immunohistochemical, and flow cytometric study of 35 cases. Am J Surg Pathol. 1991;15(6):529–53.CrossRefPubMedGoogle Scholar
  24. 24.
    Rosai J, Sobin LH. Histological typing of tumours of the thymus. New York: Berlin/Springer; 1999. 65 p.CrossRefGoogle Scholar
  25. 25.
    Soga J, Yakuwa Y, Osaka M. Evaluation of 342 cases of mediastinal/thymic carcinoids collected from literature: a comparative study between typical carcinoids and atypical varieties. Ann Thorac Cardiovasc Surg Off J Assoc Thorac Cardiovasc Surg Asia. 1999;5(5):285–92.Google Scholar
  26. 26.
    de Perrot M, Spiliopoulos A, Fischer S, Totsch M, Keshavjee S. Neuroendocrine carcinoma (carcinoid) of the thymus associated with Cushing’s syndrome. Ann Thorac Surg. 2002;73(2):675–81.CrossRefPubMedGoogle Scholar
  27. 27.
    Suster S, Moran CA. Neuroendocrine neoplasms of the mediastinum. Am J Clin Pathol. 2001;115(Suppl):S17–27.PubMedGoogle Scholar
  28. 28.
    Role of 68 Ga-DOTATOC PET/CT in carcinoids. Pathol Int. 2010;60(2):143–4.Google Scholar
  29. 29.
    Teh BT, McArdle J, Chan SP, Menon J, Hartley L, Pullan P, et al. Clinicopathologic studies of thymic carcinoids in multiple endocrine neoplasia type 1. Medicine (Baltimore). 1997;76(1):21–9.CrossRefGoogle Scholar
  30. 30.
    Jansson JO, Svensson J, Bengtsson BA, Frohman LA, Ahlman H, Wängberg B, et al. Acromegaly and Cushing’s syndrome due to ectopic production of GHRH and ACTH by a thymic carcinoid tumour: in vitro responses to GHRH and GHRP-6. Clin Endocrinol (Oxf). 1998;48(2):243–50.CrossRefGoogle Scholar
  31. 31.
    Jeung M-Y, Gasser B, Gangi A, Charneau D, Ducroq X, Kessler R, et al. Bronchial carcinoid tumors of the thorax: spectrum of radiologic findings. Radiogr Rev Publ Radiol Soc N Am Inc. 2002;22(2):351–65.Google Scholar
  32. 32.
    Lococo F, Treglia G, Cesario A, Paci M, Filice A, Versari A, et al. Functional imaging evaluation in the detection, diagnosis, and histologic differentiation of pulmonary neuroendocrine tumors. Thorac Surg Clin. 2014;24(3):285–92.CrossRefPubMedGoogle Scholar
  33. 33.
    Daddi N, Ferolla P, Urbani M, Semeraro A, Avenia N, Ribacchi R, et al. Surgical treatment of neuroendocrine tumors of the lung. Eur J Cardiothorac Surg Off J Eur Assoc Cardiothorac Surg. 2004;26(4):813–7.CrossRefGoogle Scholar
  34. 34.
    Benson REC, Rosado-de-Christenson ML, Martínez-Jiménez S, Kunin JR, Pettavel PP. Spectrum of pulmonary neuroendocrine proliferations and neoplasms. Radiogr Rev Publ Radiol Soc N Am Inc. 2013;33(6):1631–49.Google Scholar
  35. 35.
    Okoye CC, Jablons DM, Jahan TM, Kukreja J, Cardozo S, Yom SS. Divergent Management Strategies for Typical Versus Atypical Carcinoid Tumors of the Thoracic Cavity. Am J Clin Oncol. 2014;37(4):350–5.CrossRefPubMedGoogle Scholar
  36. 36.
    Fukai I, Masaoka A, Fujii Y, Yamakawa Y, Yokoyama T, Murase T, et al. Thymic neuroendocrine tumor (thymic carcinoid): a clinicopathologic study in 15 patients. Ann Thorac Surg. 1999;67(1):208–11.CrossRefPubMedGoogle Scholar
  37. 37.
    de Montpréville VT, Macchiarini P, Dulmet E. Thymic neuroendocrine carcinoma (carcinoid): a clinicopathologic study of fourteen cases. J Thorac Cardiovasc Surg. 1996;111(1):134–41.CrossRefPubMedGoogle Scholar
  38. 38.
    Phan AT, Oberg K, Choi J, Harrison LH, Hassan MM, Strosberg JR, et al. NANETS consensus guideline for the diagnosis and management of neuroendocrine tumors: well-differentiated neuroendocrine tumors of the thorax (includes lung and thymus). Pancreas. 2010;39(6):784–98.CrossRefPubMedGoogle Scholar
  39. 39.
    Wong KK, Waterfield RT, Marzola MC, Scarsbrook AF, Chowdhury FU, Gross MD, et al. Contemporary nuclear medicine imaging of neuroendocrine tumours. Clin Radiol. 2012;67(11):1035–50.CrossRefPubMedGoogle Scholar
  40. 40.
    Xu C, Zhang H. Somatostatin receptor based imaging and radionuclide therapy. BioMed Res Int. 2015;2015:1–14.Google Scholar
  41. 41.
    Rufini V, Calcagni ML, Baum RP. Imaging of neuroendocrine tumors. Semin Nucl Med. 2006;36(3):228–47.CrossRefPubMedGoogle Scholar
  42. 42.
    Yellin A, Zwas ST, Rozenman J, Simansky DA, Goshen E. Experience with somatostatin receptor scintigraphy in the management of pulmonary carcinoid tumors. Isr Med Assoc J IMAJ. 2005;7(11):712–6.PubMedGoogle Scholar
  43. 43.
    Hervás Benito I, Bello Arques P, Loaiza JL, Vercher JL, Velasco RP, Rivas Sánchez A, et al. Somatostatin receptor scintigraphy in pediatric bronchial carcinoid tumor. Rev Esp Med Nucl. 2010;29(1):25–8.CrossRefPubMedGoogle Scholar
  44. 44.
    Shulkin BL, Ilias I, Sisson JC, Pacak K. Current trends in functional imaging of pheochromocytomas and paragangliomas. Ann N Y Acad Sci. 2006;1073:374–82.CrossRefPubMedGoogle Scholar
  45. 45.
    Taal BG, Hoefnagel CA, Valdés Olmos RA, Boot H. Combined diagnostic imaging with 131I-metaiodobenzylguanidine and 111In-pentetreotide in carcinoid tumours. Eur J Cancer Oxf Engl 1990. 1996;32A(11):1924–32.Google Scholar
  46. 46.
    Yüksel M, Eziddin S, Ladwein E, Haas S, Biersack H-J. 111In-pentetreotide and 123I-MIBG for detection and resection of lymph node metastases of a carcinoid not visualized by CT, MRI or FDG-PET. Ann Nucl Med. 2005;19(7):611–5.CrossRefPubMedGoogle Scholar
  47. 47.
    von Guggenberg E, Sarg B, Lindner H, Melendez Alafort L, Mather SJ, Moncayo R, et al. Preparation via coligand exchange and characterization of [99mTc-EDDA-HYNIC-D-Phe1, Tyr3]Octreotide (99mTc-EDDA/HYNIC-TOC). J Label Compd Radiopharm. 2003;46(4):307–18.CrossRefGoogle Scholar
  48. 48.
    Płachcińska A, Mikołajczak R, Kozak J, Rzeszutek K, Kuśmierek J. A visual and semi-quantitative assessment of (99m)Tc-EDDA/HYNIC-TOC scintigraphy in differentiation of solitary pulmonary nodules. Nucl Med Rev Cent East Eur. 2004;7(2):143–50.PubMedGoogle Scholar
  49. 49.
    Nocuń A, Chrapko B, Gołębiewska R, Stefaniak B, Czekajska-Chehab E. Evaluation of somatostatin receptors in large cell pulmonary neuroendocrine carcinoma with 99mTc-EDDA/HYNIC-TOC scintigraphy. Nucl Med Commun. 2011;32(6):522–9.CrossRefPubMedGoogle Scholar
  50. 50.
    Pacak K, Eisenhofer G, Goldstein DS. Functional imaging of endocrine tumors: role of positron emission tomography. Endocr Rev. 2004;25(4):568–80.CrossRefPubMedGoogle Scholar
  51. 51.
    Erasmus JJ, McAdams HP, Patz EF, Coleman RE, Ahuja V, Goodman PC. Evaluation of primary pulmonary carcinoid tumors using FDG PET. AJR Am J Roentgenol. 1998;170(5):1369–73.CrossRefPubMedGoogle Scholar
  52. 52.
    Bryant AS, Cerfolio RJ. The maximum standardized uptake values on integrated FDG-PET/CT is useful in differentiating benign from malignant pulmonary nodules. Ann Thorac Surg. 2006;82(3):1016–20.CrossRefPubMedGoogle Scholar
  53. 53.
    Krüger S, Buck AK, Blumstein NM, Pauls S, Schelzig H, Kropf C, et al. Use of integrated FDG PET/CT imaging in pulmonary carcinoid tumours. J Intern Med. 2006;260(6):545–50.CrossRefPubMedGoogle Scholar
  54. 54.
    Daniels CE, Lowe VJ, Aubry M-C, Allen MS, Jett JR. The utility of fluorodeoxyglucose positron emission tomography in the evaluation of carcinoid tumors presenting as pulmonary nodules. Chest. 2007;131(1):255–60.CrossRefPubMedGoogle Scholar
  55. 55.
    Venkitaraman B, Karunanithi S, Kumar A, Khilnani GC, Kumar R. Role of 68Ga-DOTATOC PET/CT in initial evaluation of patients with suspected bronchopulmonary carcinoid. Eur J Nucl Med Mol Imaging. 2014;41(5):856–64.CrossRefPubMedGoogle Scholar
  56. 56.
    Gasparri R, Rezende GC, Fazio N, Maisonneuve P, Brambilla D, Travaini LL, et al. Fluorodeoxyglucose positron emission tomography in pulmonary carcinoid tumors. Q J Nucl Med Mol Imaging Off Publ Ital Assoc Nucl Med AIMN Int Assoc Radiopharmacol IAR Sect Soc Radiopharm Chem Biol. 2015;59(4):446–54.Google Scholar
  57. 57.
    Wartski M, Alberini J-L, Leroy-Ladurie F, De Montpreville V, Nguyen C, Corone C, et al. Typical and atypical bronchopulmonary carcinoid tumors on FDG PET/CT imaging. Clin Nucl Med. 2004;29(11):752–3.CrossRefPubMedGoogle Scholar
  58. 58.
    Zeman RK, Schiebler M, Clark LR, Jaffe MH, Paushter DM, Grant EG, et al. The clinical and imaging spectrum of pancreaticoduodenal lymph node enlargement. AJR Am J Roentgenol. 1985;144(6):1223–7.CrossRefPubMedGoogle Scholar
  59. 59.
    Jindal T, Kumar A, Kumar R, Dutta R, Meena M. Role of positron emission tomography-computed tomography in bronchial mucoepidermoid carcinomas: a case series and review of the literature. J Med Case Reports. 2010;4:277.CrossRefPubMedCentralGoogle Scholar
  60. 60.
    Jindal T, Kumar A, Kumar R. Inflammatory myofibroblastic tumour. Eur Respir J. 2010;35(6):1422–3.CrossRefPubMedGoogle Scholar
  61. 61.
    Treglia G, Giovanella L, Lococo F, Bertagna F. An unusual case of thymic carcinoid causing Cushing’s syndrome due to ectopic ACTH secretion detected by (18)F-FDG PET/CT. Rev Esp Med Nucl E Imagen Mol. 2014;33(4):253–4.Google Scholar
  62. 62.
    Doi M, Sugiyama T, Izumiyama H, Yoshimoto T, Hirata Y. Clinical features and management of ectopic ACTH syndrome at a single institute in Japan. Endocr J. 2010;57(12):1061–9.CrossRefPubMedGoogle Scholar
  63. 63.
    Xu H, Zhang M, Zhai G, Zhang M, Ning G, Li B. The role of integrated (18)F-FDG PET/CT in identification of ectopic ACTH secretion tumors. Endocrine. 2009;36(3):385–91.CrossRefPubMedGoogle Scholar
  64. 64.
    Gatto F, Hofland LJ. The role of somatostatin and dopamine D2 receptors in endocrine tumors. Endocr Relat Cancer. 2011;18(6):R233–51.CrossRefPubMedGoogle Scholar
  65. 65.
    Maecke HR, Hofmann M, Haberkorn U. (68)Ga-labeled peptides in tumor imaging. J Nucl Med Off Publ Soc Nucl Med. 2005;46 Suppl 1:172S–8.Google Scholar
  66. 66.
    Breeman WAP, de Blois E, Sze Chan H, Konijnenberg M, Kwekkeboom DJ, Krenning EP. (68)Ga-labeled DOTA-peptides and (68)Ga-labeled radiopharmaceuticals for positron emission tomography: current status of research, clinical applications, and future perspectives. Semin Nucl Med. 2011;41(4):314–21.CrossRefPubMedGoogle Scholar
  67. 67.
    Poeppel TD, Binse I, Petersenn S, Lahner H, Schott M, Antoch G, et al. 68Ga-DOTATOC versus 68Ga-DOTATATE PET/CT in functional imaging of neuroendocrine tumors. J Nucl Med. 2011;52(12):1864–70.CrossRefPubMedGoogle Scholar
  68. 68.
    Hofmann M, Maecke H, Börner A, Weckesser E, Schöffski P, Oei M, et al. Biokinetics and imaging with the somatostatin receptor PET radioligand 68Ga-DOTATOC: preliminary data. Eur J Nucl Med. 2001;28(12):1751–7.CrossRefPubMedGoogle Scholar
  69. 69.
    Kowalski J, Henze M, Schuhmacher J, Mäcke HR, Hofmann M, Haberkorn U. Evaluation of positron emission tomography imaging using [68Ga]-DOTA-D Phe(1)-Tyr(3)-Octreotide in comparison to [111In]-DTPAOC SPECT. First results in patients with neuroendocrine tumors. Mol Imaging Biol MIB Off Publ Acad Mol Imaging. 2003;5(1):42–8.CrossRefGoogle Scholar
  70. 70.
    Kayani I, Bomanji JB, Groves A, Conway G, Gacinovic S, Win T, et al. Functional imaging of neuroendocrine tumors with combined PET/CT using 68Ga-DOTATATE (DOTA-DPhe1, Tyr3-octreotate) and 18F-FDG. Cancer. 2008;112(11):2447–55.CrossRefPubMedGoogle Scholar
  71. 71.
    Jindal T, Kumar A, Venkitaraman B, Dutta R, Kumar R. Role of (68)Ga-DOTATOC PET/CT in the evaluation of primary pulmonary carcinoids. Korean J Intern Med. 2010;25(4):386–91.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Jindal T, Kumar A, Venkitaraman B, Meena M, Kumar R, Malhotra A, et al. Evaluation of the role of [18F]FDG-PET/CT and [68Ga]DOTATOC-PET/CT in differentiating typical and atypical pulmonary carcinoids. Cancer Imaging Off Publ Int Cancer Imaging Soc. 2011;11:70–5.Google Scholar
  73. 73.
    Lococo F, Perotti G, Cardillo G, De Waure C, Filice A, Graziano P, et al. Multicenter comparison of 18F-FDG and 68Ga-DOTA-peptide PET/CT for pulmonary carcinoid. Clin Nucl Med. 2015;40(3):e183–9.CrossRefPubMedGoogle Scholar
  74. 74.
    Dutta R, Kumar A, Julka PK, Mathur SR, Kaushal S, Kumar R, et al. Thymic neuroendocrine tumour (carcinoid): clinicopathological features of four patients with different presentation. Interact Cardiovasc Thorac Surg. 2010;11(6):732–6.CrossRefPubMedGoogle Scholar
  75. 75.
    Baker JR. Fixation in cytochemistry and electron-microscopy. J Histochem Cytochem Off J Histochem Soc. 1958;6(5):303–8.CrossRefGoogle Scholar
  76. 76.
    Bergström M, Eriksson B, Oberg K, Sundin A, Ahlström H, Lindner KJ, et al. In vivo demonstration of enzyme activity in endocrine pancreatic tumors: decarboxylation of carbon-11-DOPA to carbon-11-dopamine. J Nucl Med Off Publ Soc Nucl Med. 1996;37(1):32–7.Google Scholar
  77. 77.
    Balogova S, Talbot J-N, Nataf V, Michaud L, Huchet V, Kerrou K, et al. 18F-Fluorodihydroxyphenylalanine vs other radiopharmaceuticals for imaging neuroendocrine tumours according to their type. Eur J Nucl Med Mol Imaging. 2013;40(6):943–66.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Baum RP, Kulkarni HR, Carreras C. Peptides and receptors in image-guided therapy: theranostics for neuroendocrine neoplasms. Semin Nucl Med. 2012;42(3):190–207.CrossRefPubMedGoogle Scholar
  79. 79.
    Mariniello A, Bodei L, Tinelli C, Baio SM, Gilardi L, Colandrea M, et al. Long-term results of PRRT in advanced bronchopulmonary carcinoid. Eur J Nucl Med Mol Imaging. 2016;43(3):441–52.CrossRefPubMedGoogle Scholar
  80. 80.
    Antoch G, Bockisch A. Combined PET/MRI: a new dimension in whole-body oncology imaging? Eur J Nucl Med Mol Imaging. 2009;36(S1):113–20.CrossRefGoogle Scholar
  81. 81.
    Ordidge KL, Brown JM, Succony L, Navani N, Hardavella G, Lawrence DR, et al. Massive pulmonary carcinoid tumor deemed inoperable until 68 Ga DOTATATE positron emission tomography/magnetic resonance imaging. Am J Respir Crit Care Med. 2014;190(5):e16–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Sellam Karunanithi
    • 1
  • Ganesh Kumar
    • 2
  • Rakesh Kumar
    • 3
    Email author
  1. 1.Department of Nuclear MedicineAster MIMS Hospital, Malabar Institute of Medical Sciences LtdCalicutIndia
  2. 2.Division of Diagnostic Nuclear Medicine, Department of Nuclear MedicineAll India Institute of Medical Sciences, AIIMS CampusNew DelhiIndia
  3. 3.Division of Diagnostic Nuclear Medicine, Department of Nuclear MedicineAll India Institute of Medical SciencesNew DelhiIndia

Personalised recommendations