Robot Games with States in Dimension One

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9899)

Abstract

A robot game with states is a two-player vector addition game played on integer lattice \(\mathbb {Z}^n\). Both players have their own control states and in each turn the vector chosen by a player, according to his/her internal control structure, is added to the current configuration vector of the game. One of the players, called Eve, tries to play the game from the initial configuration to the origin while the other player, Adam, tries to avoid the origin. The problem is to decide whether or not Eve has a winning strategy. In this paper we prove that deciding the winner in a robot game with states in dimension one is EXPSPACE-complete. Additionally we study a subclass of robot games with states where deciding the winner is in EXPTIME.

Keywords

Reachability games Vector addition game Decidability Winning strategy 

References

  1. 1.
    Abdulla, P.A., Bouajjani, A., d’Orso, J.: Monotonic and downward closed games. J. Log. Comput. 18(1), 153–169 (2008)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Abdulla, P.A., Mayr, R., Sangnier, A., Sproston, J.: Solving parity games on integer vectors. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013 – Concurrency Theory. LNCS, vol. 8052, pp. 106–120. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J. ACM 49(5), 672–713 (2002)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Arul, A., Reichert, J.: The complexity of robot games on the integer line. In: Proceedings of QApPL 2013, EPTCS, vol. 117, pp. 132–148 (2013)Google Scholar
  5. 5.
    Brázdil, T., Brozek, V., Etessami, K.: One-counter stochastic games. In: Proceedings of FSTTCS 2010, LIPIcs, vol. 8, pp. 108–119 (2010)Google Scholar
  6. 6.
    Brázdil, T., Jančar, P., Kučera, A.: Reachability games on extended vector addition systems with states. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 478–489. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Chatterjee, K., Doyen, L.: Energy parity games. Theor. Comput. Sci. 458, 49–60 (2012)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Comon, H., Cortier, V.: Flatness is not a weakness. In: Clote, P.G., Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, p. 262. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Comon, H., Jurski, Y.: Multiple counters automata, safety analysis and presburger arithmetic. CAV’98. LNCS, vol. 1427, pp. 268–279. Springer, Heidelberg (1998)Google Scholar
  10. 10.
    Comon, H., Jurski, Y.: Timed automata and the theory of real numbers. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, p. 242. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Doyen, L., Rabinovich, A.: Robot games. Personal website, 2011. Technical report LSV-13-02, LSV, ENS Cachan (2013). http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/PDF/rr-lsv-2013-02.pdf
  12. 12.
    Fahrenberg, U., Juhl, L., Larsen, K.G., Srba, J.: Energy games in multiweighted automata. In: Cerone, A., Pihlajasaari, P. (eds.) ICTAC 2011. LNCS, vol. 6916, pp. 95–115. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games: A Guide to Current Research. LNCS, vol. 2500. Springer, Heidelberg (2002)MATHGoogle Scholar
  14. 14.
    Halava, V., Harju, T., Niskanen, R., Potapov, I.: Weighted automata on infinite words in the context of attacker-defender games. In: Beckmann, A., Mitrana, V., Soskova, M. (eds.) CiE 2015. LNCS, vol. 9136, pp. 206–215. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  15. 15.
    Halava, V., Niskanen, R., Potapov, I.: On robot games of degree two. In: Dediu, A.-H., Formenti, E., Martín-Vide, C., Truthe, B. (eds.) LATA 2015. LNCS, vol. 8977, pp. 224–236. Springer, Heidelberg (2015)Google Scholar
  16. 16.
    Hunter, P.: Reachability in succinct one-counter games. In: Bojanczyk, M., Lasota, S., Potapov, I. (eds.) RP 2015. LNCS, vol. 9328, pp. 37–49. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24537-9_5 CrossRefGoogle Scholar
  17. 17.
    Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to branching-time model checking. J. ACM 47(2), 312–360 (2000)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Leroux, J., Penelle, V., Sutre, G.: The context-freeness problem is coNP-complete for flat counter systems. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 248–263. Springer, Heidelberg (2014)Google Scholar
  19. 19.
    Leroux, J., Sutre, G.: Flat counter automata almost everywhere!. In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 489–503. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Niskanen, R., Potapov, I., Reichert, J.: Undecidability of two-dimensional robot games. In: Proceedings of MFCS 2016, LIPIcs, vol. 58, pp. 74:1–74:13 (2016)Google Scholar
  21. 21.
    Reichert, J.: Reachability games with counters: decidability and algorithms. Doctoral thesis, Laboratoire Spécification et Vérification, ENS Cachan, France (2015)Google Scholar
  22. 22.
    Reichert, J.: On the complexity of counter reachability games. Fundam. Inform. 143(3–4), 415–436 (2016)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Walukiewicz, I.: Pushdown processes: games and model-checking. Inf. Comput. 164(2), 234–263 (2001)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of LiverpoolLiverpoolUK

Personalised recommendations