Towards the Automated Verification of Weibull Distributions for System Failure Rates

  • Yu LuEmail author
  • Alice A. Miller
  • Ruth Hoffmann
  • Christopher W. Johnson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9933)


Weibull distributions can be used to accurately model failure behaviours of a wide range of critical systems such as on-orbit satellite subsystems. Markov chains have been used extensively to model reliability and performance of engineering systems or applications. However, the exponentially distributed sojourn time of Continuous-Time Markov Chains (CTMCs) can sometimes be unrealistic for satellite systems that exhibit Weibull failures. In this paper, we develop novel semi-Markov models that characterise failure behaviours, based on Weibull failure modes inferred from realistic data sources. We approximate and encode these new models with CTMCs and use the PRISM probabilistic model checker. The key benefit of this integration is that CTMC-based model checking tools allow us to automatically and efficiently verify reliability properties relevant to industrial critical systems.


Satellite systems Weibull distribution Continuous-time markov chains Semi-markov chains Probabilistic model checking 


  1. 1.
    Castet, J.F., Saleh, J.H.: Satellite and satellite subsystems reliability: statistical data analysis and modeling. Reliab. Eng. Syst. Safety 94(11), 1718–1728 (2009)CrossRefGoogle Scholar
  2. 2.
    Castet, J.F., Saleh, J.H.: Beyond reliability, multi-state failure analysis of satellite subsystems: a statistical approach. Reliab. Eng. Syst. Safety 95(4), 311–322 (2010)CrossRefGoogle Scholar
  3. 3.
    Feldmann, A., Whitt, W.: Fitting mixtures of exponentials to long-tail distributions to analyze network performance models. Perform. Eval. 31(3–4), 245–279 (1998)CrossRefGoogle Scholar
  4. 4.
    López, G.G.I., Hermanns, H., Katoen, J.-P.: Beyond memoryless distributions: model checking semi-Markov chains. In: de Luca, L., Gilmore, S. (eds.) PROBMIV 2001, PAPM-PROBMIV 2001, and PAPM 2001. LNCS, vol. 2165, pp. 57–70. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Verifying quantitative properties of continuous probabilistic timed automata. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 123–137. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Gopinath, K., Elerath, J., Long, D.: Reliability modelling of disk subsystems with probabilistic model checking. Technical report UCSC-SSRC-09-05, University of California, Santa Cruz (2009)Google Scholar
  7. 7.
    Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model checking with PRISM: a hybrid approach. Int. J. Softw. Tools Technol. Transfer 6(2), 128–142 (2004)CrossRefzbMATHGoogle Scholar
  8. 8.
    Malhotra, M., Reibman, A.: Selecting and implementing phase approximations for semi-Markov models. Commun. Stat.–Stochast. Models 9(4), 473–506 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Xin, Q., Schwarz, Thomas J. E S.J., Miller, E.L.: Disk infant mortality in large storage systems. In: Proceedings of the 13th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS 2005), pp. 125–134. IEEE (2005)Google Scholar
  10. 10.
    Reijsbergen, D., Gilmore, S., Hillston, J.: Patch-based modelling of city-centre bus movement with phase-type distributions. Electron. Notes Theor. Comput. Sci. 310, 157–177 (2015)CrossRefGoogle Scholar
  11. 11.
    Ciobanu, G., Rotaru, A.: Phase-type approximations for non-Markovian systems: a case study. In: Canal, C., Idani, A. (eds.) SEFM 2014 Workshops. LNCS, vol. 8938, pp. 323–334. Springer, Heidelberg (2015)Google Scholar
  12. 12.
    Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, Cambridge (2008)zbMATHGoogle Scholar
  13. 13.
    Peng, Z., Lu, Y., Miller, A.A., Johnson, C.W., Zhao, T.: Formal specification and quantitative analysis of a constellation of navigation satellites. Qual. Reliab. Eng. Int. 32(2), 345–361 (2014)CrossRefGoogle Scholar
  14. 14.
    Lu, Y., Peng, Z., Miller, A., Zhao, T., Johnson, C.: How reliable is satellite navigation for aviation? Checking availability properties with probabilistic verification. Reliab. Eng. Syst. Safety 144, 95–116 (2015)CrossRefGoogle Scholar
  15. 15.
    Peng, Z., Lu, Y., Miller, A.: Uncertainty analysis of phased mission systems with probabilistic timed automata. In: Proceedings of the 7th IEEE International Conference on Prognostics and Health Management (PHM 2016). IEEE (2016)Google Scholar
  16. 16.
    Alur, R., Henzinger, T.A.: Reactive modules. Formal Methods Syst. Des. 15(1), 7–48 (1999)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model-checking continuous-time Markov chains. ACM Trans. Comput. Logic 1(1), 162–170 (2000)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Weibull, W.: A statistical distribution function of wide applicability. J. Appl. Mech. 18, 293–297 (1951)zbMATHGoogle Scholar
  19. 19.
    Evans, M., Hastings, N., Peacock, B.: Erlang Distribution. In: Distributions, Statistical (ed.) 3rd edn., pp. 71–73. Wiley, New York (2000)Google Scholar
  20. 20.
    Bolch, G., Greiner, S., de Meer, H., Trivedi, K.S.: Introduction. In: Queueing networks and markov chains: modeling and performance evaluation with computer science applications. Wiley, New York (1998)Google Scholar
  21. 21.
    Miller, A., Donaldson, A., Calder, M.: Symmetry in temporal logic model checking. ACM Computing Surveys 38(3) (2006)Google Scholar
  22. 22.
    Kwiatkowska, M., Norman, G., Parker, D.: Symmetry reduction for probabilistic model checking. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 234–248. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Yu Lu
    • 1
    • 2
    Email author
  • Alice A. Miller
    • 1
  • Ruth Hoffmann
    • 1
  • Christopher W. Johnson
    • 1
  1. 1.School of Computing ScienceUniversity of GlasgowGlasgowUK
  2. 2.School of Aerospace, Transport and ManufacturingCranfield UniversityCranfieldUK

Personalised recommendations