Advertisement

Spatiotemporal Pattern Matching in RoboCup

  • Tom WarnkeEmail author
  • Adelinde M. Uhrmacher
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9872)

Abstract

Whereas agent-based models are built on the micro-level, the interesting model output is often observed on the macro-level. In models with agents moving in space this leads to complex movement patterns. We propose a method to describe the simultaneous movement of agents by graphs that encode qualitative spatial relations between object pairs and the change of these relations over time. Movement patterns can then be expressed as graph patterns. We present two approaches to find occurrences of such graph patterns, using a graph database query and using a customized graph algorithm. Based on the example of the RoboCup soccer simulation, we demonstrate the use of our approach to define and find movement patterns in spatial multi-agent systems.

Notes

Acknowledgments

We would like to thank Roland Ewald, Stefan Leye, and Arne Bittig for their valuable input on the concepts developed in this paper. This research is partly supported by the German Research Foundation (DFG) via the research grant MoSiLLDe (UH-66/15-1).

References

  1. 1.
    Soccer Simulation League - RoboCup Federation Wiki. http://wiki.robocup.org/wiki/Soccer_Simulation_League
  2. 2.
    Aiello, M., Pratt-Hartmann, I., van Benthem, J. (eds.): Handbook of Spatial Logics. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  3. 3.
    Angles, R., Gutierrez, C.: Survey of graph database models. ACM Comput. Surv. 40(1), 1:1–1:39 (2008)CrossRefGoogle Scholar
  4. 4.
    Barceló, P., Libkin, L., Reutter, J.L.: Querying graph patterns. In: Proceedings of the 13th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 199–210. ACM (2011)Google Scholar
  5. 5.
    Bortolussi, L., Nenzi, L.: Specifying and monitoring properties of stochastic spatio-temporal systems in signal temporal logic. In: Proceedings of the 8th International Conference on Performance Evaluation Methodologies and Tools, pp. 66–73. ICST (2014)Google Scholar
  6. 6.
    Braun, H.J.: Soccer tactics as science? On ‘Scotch Professors’, a Ukrainian soccer Buddha, and a Catalonian who tries to learn German. J. Int. Comm. Hist. Technol. 19, 216–243 (2013)Google Scholar
  7. 7.
    Cheng, J.D.: Qualitative spatio-temporal reasoning about movement of mobile agents/objects. In: Proceedings of the 7th International Conference on Machine Learning and Cybernetics, pp. 3341–3346 (2008)Google Scholar
  8. 8.
    Cohn, A.G., Renz, J.: Qualitative spatial representation and reasoning. In: van Harmelen, F., Lifschitz, V., Porter, B. (eds.) Foundations of Artificial Intelligence, Handbook of Knowledge Representation, vol. 3, pp. 551–596. Elsevier (2008)Google Scholar
  9. 9.
    De Nicola, R., Katoen, J.P., Latella, D., Loreti, M., Massink, M.: Model checking mobile stochastic logic. Theor. Comput. Sci. 382(1), 42–70 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Düntsch, I.: Relation algebras and their application in temporal and spatial reasoning. Artif. Intell. Rev. 23(4), 315–357 (2005)CrossRefzbMATHGoogle Scholar
  11. 11.
    Forbus, K.D.: Qualitative modeling. In: van Harmelen, F., Lifschitz, V., Porter, B. (eds.) Foundations of Artificial Intelligence, Handbook of Knowledge Representation, vol. 3, pp. 361–393. Elsevier (2008)Google Scholar
  12. 12.
    Frank, A.U.: Qualitative spatial reasoning with cardinal directions. In: Kaindl, H. (ed.) 7. Österreichische Artificial-Intelligence-Tagung/Seventh Austrian Conference on Artificial Intelligence. Informatik-Fachberichte, vol. 287, pp. 157–167. Springer, Heidelberg (1991)Google Scholar
  13. 13.
    Frank, A.U.: Qualitative spatial reasoning about distances and directions in geographic space. J. Vis. Lang. Comput. 3(4), 343–371 (1992)CrossRefGoogle Scholar
  14. 14.
    Gagné, D., Pang, W., Trudel, A.: A spatio-temporal logic for 2D multi-agent problem domains. Expert Syst. Appl. 12(1), 141–145 (1997)CrossRefGoogle Scholar
  15. 15.
    Gallagher, B.: Matching structure and semantics: a survey on graph-based pattern matching. In: Papers from the 2006 AAAI Fall Symposium, vol. 6, pp. 45–53 (2006)Google Scholar
  16. 16.
    Grunz, A., Memmert, D., Perl, J.: Tactical pattern recognition in soccer games by means of special self-organizing maps. Hum. Mov. Sci. 31(2), 334–343 (2012)CrossRefGoogle Scholar
  17. 17.
    Gudmundsson, J., van Kreveld, M., Speckmann, B.: Efficient detection of motion patterns in spatio-temporal data sets. In: Proceedings of the 12th Annual ACM International Workshop on Geographic Information Systems, pp. 250–257. ACM (2004)Google Scholar
  18. 18.
    Gudmundsson, J., Wolle, T.: Football analysis using spatio-temporal tools. Comput. Environ. Urban Syst. 47, 16–27 (2014)CrossRefGoogle Scholar
  19. 19.
    Holzschuher, F., Peinl, R.: Querying a graph database – language selection and performance considerations. J. Comput. Syst. Sci. 82(1), 45–68 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Jouili, S., Vansteenberghe, V.: An empirical comparison of graph databases. In: Proceedings of the 2013 International Conference on Social Computing, pp. 708–715. IEEE Computer Society (2013)Google Scholar
  21. 21.
    Laube, P., Imfeld, S., Weibel, R.: Discovering relative motion patterns in groups of moving point objects. Int. J. Geog. Inf. Sci. 19(6), 639–668 (2005)CrossRefGoogle Scholar
  22. 22.
    Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview. In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  23. 23.
    Lux, T., Marchesi, M.: Scaling and criticality in a stochastic multi-agent model of a financial market. Nature 397(6719), 498–500 (1999)CrossRefGoogle Scholar
  24. 24.
    Noble, J., Silverman, E., Bijak, J., Rossiter, S., Evandrou, M., Bullock, S., Vlachantoni, A., Falkingham, J.: Linked lives: the utility of an agent-based approach to modeling partnership and household formation in the context of social care. In: Proceedings of the Winter Simulation Conference, pp. 93:1–93:12. WSC (2012)Google Scholar
  25. 25.
    Pârvu, O., Gilbert, D., Heiner, M., Liu, F., Saunders, N., Shaw, S.: Spatial-Temporal modelling and analysis of bacterial colonies with phase variable genes. ACM Trans. Model. Comput. Simul. 25(2), 13:1–13:25 (2015)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Sakr, M.A., Güting, R.H.: Spatiotemporal pattern queries. GeoInformatica 15(3), 497–540 (2011)CrossRefGoogle Scholar
  27. 27.
    Sakr, M.A., Güting, R.H.: Group spatiotemporal pattern queries. GeoInformatica 18(4), 699–746 (2014)CrossRefGoogle Scholar
  28. 28.
    Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM 23(1), 31–42 (1976)MathSciNetCrossRefGoogle Scholar
  29. 29.
    van Harmelen, F., Lifschitz, V., Porter, B.: Handbook of Knowledge Representation. Elsevier Science, San Diego (2007)zbMATHGoogle Scholar
  30. 30.
    Wilensky, U.: Modeling natures emergent patterns with multi-agent languages. In: Proceedings of EuroLogo, pp. 1–6. Citeseer (2001)Google Scholar
  31. 31.
    Zhang, H., Jiang, M., Dai, H., Bai, A., Chen, X.: WrightEagle 2D soccer simulation team description 2014. In: RoboCup (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of Computer ScienceUniversity of RostockRostockGermany

Personalised recommendations