Design and Use of a Semantic Similarity Measure for Interoperability Among Agents

  • Johannes Fähndrich
  • Sabine Weber
  • Sebastian Ahrndt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9872)


The capability to identify the sense of polysemic words, i.e. words that have multiple meanings, is an essential part of intelligent systems, e.g. when updating an agent’s beliefs during conversations. This process is also called Word Sense Disambiguation and is approached by applying semantic similarity measures. Within this work, we present an algorithm to create such a semantic similarity measure using marker passing, that: (1) generates a semantic network out of a concepts used e.g. in semantic service descriptions, (2) sends markers through the networks to tag sub-graphs that are of relevance, and (3) uses these markers to create a semantic similarity measure. We will discuss the properties of the algorithm, elaborate its performance, and discuss the lifted properties for the algorithm to be used in WSD. To evaluate our approach, we compare it to state of the art measures using the Rubinstein1965 dataset. It is shown, that our approach outperforms these state of the art measures.


Semantic Similarity Word Pair Active Node Service Oriented Architecture Word Sense Disambiguation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Agirre, E., Alfonseca, E., Hall, K., Kravalova, J., Paşca, M., Soroa, A.: A study on similarity and relatedness using distributional and WordNet-based approaches. In: NAACL (2009)Google Scholar
  2. 2.
    Agirre, E., Edmonds, P.G.: Word Sense Disambiguation: Algorithms and Applications. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Bar-Hillel, Y.: The present status of automatic translation of languages. In: Advances in Computers, vol. 1 (1960)Google Scholar
  4. 4.
    Baroni, M., Dinu, G., Kruszewski, G.: Don’t count, predict! A systematic comparison of context-counting vs. context-predicting semantic vectors. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, (vol. 1: Long Papers) (2014)Google Scholar
  5. 5.
    Berthold, M.R., Brandes, U., Kötter, T., Mader, M., Nagel, U., Thiel, K.: Pure spreading activation is pointless. In: CIKM (2009)Google Scholar
  6. 6.
    Bruni, E., Tran, N.K., Baroni, M.: Multimodal distributional semantics. J. Artif. Intell. Res. (JAIR) 49, 1–47 (2014)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Charniak, E.: A neat theory of marker passing. In: AAAI (1986)Google Scholar
  8. 8.
    Chen, D., Jianzhuo, Y., Liying, F., Bin, S.: Measure semantic distance in wordnet based on directed graph search. In: EEEE 2009 (2009)Google Scholar
  9. 9.
    Crestani, F.: Application of spreading activation techniques in information retrieval. Artif. Intell. Rev. 11(6), 453–482 (1997)CrossRefGoogle Scholar
  10. 10.
    Erl, T.: SOA Principles of Service Design. Prentice Hall, Upper Saddle River (2007)Google Scholar
  11. 11.
    Fähndrich, J., Ahrndt, S., Albayrak, S.: Are there semantic primes in formal languages? In: Omatu, S., Bersini, H., Corchado Rodríguez, J.M., González, S.R., Pawlewski, P., Bucciarelli, E. (eds.) Distributed Computing and Artificial Intelligence 11th International Conference. AISC, vol. 290, pp. 397–405. Springer, Heidelberg (2014). (Chapter 46)CrossRefGoogle Scholar
  12. 12.
    Fähndrich, J., Ahrndt, S., Albayrak, S.: Formal language decomposition into semantic primes. ADCAIJ Adv. Distrib. Comput. Artif. Intell. J. 3(8), 56 (2014)Google Scholar
  13. 13.
    Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolfman, G., Ruppin, E.: Placing search in context: the concept revisited. ACM Trans. Inf. Syst. 20, 116–131 (2002)CrossRefGoogle Scholar
  14. 14.
    Gabrilovich, E., Markovitch, S.: Computing semantic relatedness using wikipedia-based explicit semantic analysis. IJCAI 7, 1606–1611 (2007)Google Scholar
  15. 15.
    Goddard, C., Wierzbicka, A.: Semantic and Lexical Universals: Theory and Empirical Findings. John Benjamins Publishing, Amsterdam (1994)CrossRefGoogle Scholar
  16. 16.
    Hirst, G., St-Onge, D.: Lexical chains as representations of context for the detection and correction of malapropisms (1998)Google Scholar
  17. 17.
    Hughes, T., Ramage, D.: Lexical semantic relatedness with random graph walks. In: EMNLP-CoNLL (2007)Google Scholar
  18. 18.
    Ide, N., Veronis, J.: Introduction to the special issue on word sense disambiguation: the state of the art. Comput. Linguist. 24(1), 2–40 (1998)Google Scholar
  19. 19.
    Jarmasz, M., Szpakowicz, S.: Rogets thesaurus and semantic similarity rogets thesaurus relations as a measure of semantic distance. In: Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2003), pp. 212–219 (2003)Google Scholar
  20. 20.
    Lastra-Díaz, J.J., García-Serrano, A.: A novel family of IC-based similarity measures with a detailed experimental survey on WordNet. Eng. Appl. Artif. Intell. 46, 140–153 (2015)CrossRefGoogle Scholar
  21. 21.
    Leacock, C., Miller, G.A., Chodorow, M.: Using corpus statistics and WordNet relations for sense identification. Comput. Linguist. 24, 147–165 (1998)Google Scholar
  22. 22.
    Lin, D.: An information-theoretic definition of similarity. In: ICML (1998)Google Scholar
  23. 23.
    Luetzenberger, M., Kuester, T., Masuch, N., Fähndrich, J.: Multi-agent system in practice - when research meets reality. In: AAMAS 2016, Singapore (2016)Google Scholar
  24. 24.
    Luong, M.T., Socher, R., Manning, C.D.: Better word representations with recursive neural networks for morphology. In: CoNLL-2013 (2013)Google Scholar
  25. 25.
    Mihalcea, R., Corley, C., Strapparava, C.: Corpus-based and knowledge-based measures of text semantic similarity. In: AAAI (2006)Google Scholar
  26. 26.
    Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space (2013).
  27. 27.
    Miller, G.A., Charles, W.G.: Contextual correlates of semantic similarity. Lang. Cogn. Process. 6(1), 1–28 (2007)CrossRefGoogle Scholar
  28. 28.
    Minsky, M.L.: Logical versus analogical or symbolic versus connectionist or neat versus scruffy. AI Mag. 12, 35–51 (1991)Google Scholar
  29. 29.
    Navigli, R.: Word sense disambiguation: a survey. Comput. Surv. 41, 10 (2009)CrossRefGoogle Scholar
  30. 30.
    Patwardhan, S., Pedersen, T.: Using wordnet-based context vectors to estimate the semantic relatedness of concepts. In: Proceedings of the EACL 2006 Workshop Making Sense of Sense-Bringing Computational Linguistics and Psycholinguistics Together, vol. 1501, pp. 1–8. Citeseer (2006)Google Scholar
  31. 31.
    Pilehvar, M.T., Navigli, R.: From senses to texts: An all-in-one graph-based approach for measuring semantic similarity. Artif. Intell. 228, 95–128 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Rada, R., Mili, H., Bicknell, E., Blettner, M.: Development and application of a metric on semantic nets. IEEE Trans. Syst. Man Cybern. 19(1), 17–30 (1989)CrossRefGoogle Scholar
  33. 33.
    Radinsky, K., Agichtein, E., Gabrilovich, E., Markovitch, S.: A word at a time: computing word relatedness using temporal semantic analysis. ACM, New York (2011)Google Scholar
  34. 34.
    Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. CoRR abs/cmp-lg/9511007 (1995)Google Scholar
  35. 35.
    Riemer, N.: The Routledge Handbook of Semantics. Routledge, London (2015)Google Scholar
  36. 36.
    Rubenstein, H., Goodenough, J.B.: Contextual correlates of synonymy. Commun. ACM 8(10), 627–633 (1965)CrossRefGoogle Scholar
  37. 37.
    Shvaiko, P., Euzenat, J.: Ontology matching: state of the art and future challenges. IEEE Trans. Knowl. Data Eng. 25, 158–176 (2013)CrossRefGoogle Scholar
  38. 38.
    Taieb, M.A.H., Ben Aouicha, M., Ben Hamadou, A.: A new semantic relatedness measurement using WordNet features. Knowl. Inf. Syst. 41(2), 467–497 (2014)CrossRefGoogle Scholar
  39. 39.
    Thiel, K., Berthold, M.R.: Node similarities from spreading activation. In: Berthold, M.R. (ed.) Bisociative Knowledge Discovery. LNCS, vol. 7250, pp. 246–262. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  40. 40.
    Wierzbicka, A.: Semantics: Primes and Universals. Oxford University Press, Oxford (1996)Google Scholar
  41. 41.
    Wilbur, W.J., Sirotkin, K.: The automatic identification of stop words. J. Inf. Sci. 18(1), 45–55 (1991)CrossRefGoogle Scholar
  42. 42.
    Wu, Z., Palmer, M.: Verbs semantics and lexical selection. In: Proceedings of the 32nd Annual Meeting on Association for Computational Linguistics (1994)Google Scholar
  43. 43.
    Yampolskiy, R.V.: AI-complete, AI-hard, or AI-easy - classification of problems in AI. In: MAICS, pp. 94–101 (2012)Google Scholar
  44. 44.
    Yang, D., Powers, D.M.: Measuring semantic similarity in the taxonomy of wordnet. In: Proceedings of the Twenty-eighth Australasian Conference on Computer Science, vol. 38, pp. 315–322. Australian Computer Society, Inc. (2005)Google Scholar
  45. 45.
    Zesch, T., Gurevych, I.: Analysis of the Wikipedia category graph for NLP applications. In: Proceedings of the TextGraphs-2 (2007)Google Scholar
  46. 46.
    Zesch, T., Müller, C., Gurevych, I.: Using wiktionary for computing semantic relatedness. In: AAAI (2008)Google Scholar
  47. 47.
    Zesch, T., Gurevych, I.: Wisdom of crowds versus wisdom of linguists - measuring the semantic relatedness of words. Nat. Lang. Eng. 16(1), 25–59 (2010)CrossRefGoogle Scholar
  48. 48.
    Zhang, Z., Gentile, A.L., Ciravegna, F.: Recent advances in methods of lexical semantic relatedness – a survey. Technical report (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Johannes Fähndrich
    • 1
  • Sabine Weber
    • 1
  • Sebastian Ahrndt
    • 1
  1. 1.DAI-Laboratory, Department of Electrical Engineering and Computer ScienceTechnische Universität BerlinBerlinGermany

Personalised recommendations