Advertisement

Hybrid Teams: Flexible Collaboration Between Humans, Robots and Virtual Agents

  • Tim SchwartzEmail author
  • Ingo Zinnikus
  • Hans-Ulrich Krieger
  • Christian Bürckert
  • Joachim Folz
  • Bernd Kiefer
  • Peter Hevesi
  • Christoph Lüth
  • Gerald Pirkl
  • Torsten Spieldenner
  • Norbert Schmitz
  • Malte Wirkus
  • Sirko Straube
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9872)

Abstract

With the increasing capabilities of agents using Artificial Intelligence, an opportunity opens up to form team like collaboration between humans and artificial agents. This paper describes the setting-up of a Hybrid Team consisting of humans, robots, virtual characters and softbots. The team is situated in a flexible industrial production. The work presented here focuses on the central architecture and the characteristics of the team members and components. To achieve the overall team goals, several challenges have to be met to find a balance between autonomous behaviors of individual agents and coordinated teamwork.

Keywords

Team Member Artificial Agent Collision Detection Convolutional Neural Network Virtual Character 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

The research described in this paper has been funded by the German Federal Ministry of Education and Research (BMBF) through the projects HySociaTea and MADMACS (grant no. 01IW14001 and 01IW14003). The authors would like to thank the reviewers for their really valuable input.

References

  1. 1.
    Bargsten, V., de Gea Fernández, J.: COMPI: development of a 6-DOF compliant robot arm for human-robot cooperation. In: Proceedings of the International Workshop on Human-Friendly Robotics. Technische Universität München (TUM) (2015)Google Scholar
  2. 2.
    Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Chen, T., Borth, D., Darrell, T., Chang, S.F.: DeepSentiBank: visual sentiment concept classification with deep convolutional neural networks. arXiv preprint (2014). arXiv:1410.8586
  4. 4.
    Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Marin-Jimenez, M.J.: Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recogn. 47(6), 2280–2292 (2014)CrossRefGoogle Scholar
  5. 5.
    Gasic, M., Young, S.J.: Gaussian processes for POMDP-based dialogue manager optimization. IEEE/ACM Trans. Audio Speech Lang. Process. 22(1), 28–40 (2014)CrossRefGoogle Scholar
  6. 6.
    Grosz, B.J., Hunsberger, L., Kraus, S.: Planning and acting together. AI Mag. 20(4), 23–34 (1999)Google Scholar
  7. 7.
    Harada, T., Mori, T., Sato, T.: Development of a tiny orientation estimation device to operate under motion and magnetic disturbance. Int. J. Robot. Res. 26, 547–559 (2007)CrossRefGoogle Scholar
  8. 8.
    Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S.: OWL 2 web ontology language primer, 2nd edn. Technical report, W3C (2012)Google Scholar
  9. 9.
    Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)CrossRefGoogle Scholar
  10. 10.
    Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the International Conference on Multimedia, pp. 675–678. ACM (2014)Google Scholar
  11. 11.
    Johnson, M., Bradshaw, J.M., Feltovich, P.J., Jonker, C.M., van Riemsdijk, B., Sierhuis, M.: The fundamental principle of coactive design: interdependence must shape autonomy. In: De Vos, M., Fornara, N., Pitt, J.V., Vouros, G. (eds.) COIN 2010. LNCS, vol. 6541, pp. 172–191. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Johnson, M., Bradshaw, J.M., Feltovich, P.J., Jonker, C.M., van Riemsdijk, M.B., Sierhuis, M.: Coactive design: designing support for interdependence in joint activity. J. Hum.-Rob. Interact. 3(1), 43–69 (2014)CrossRefGoogle Scholar
  13. 13.
    Joyeux, S., Albiez, J.: Robot development: from components to systems. In: Proceedings of National Conference on Control Architectures of Robots (2011)Google Scholar
  14. 14.
    Joyeux, S., Kirchner, F., Lacroix, S.: Managing plans: integrating deliberation and reactive execution schemes. Robot. Auton. Syst. 58(9), 1057–1066 (2010)CrossRefGoogle Scholar
  15. 15.
    Joyeux, S., Schwendner, J., Roehr, T.M.: Modular software for an autonomous space rover. In: Proceedings of the International Symposium on AI, Robotics and Automation in Space. i-SAIRAS, p. 8 (2014)Google Scholar
  16. 16.
    Judd, T., Ehinger, K., Durand, F., Torralba, A.: Learning to predict where humans look. In: Proceedings of the International Conference on Computer Vision, pp. 2106–2113. IEEE (2009)Google Scholar
  17. 17.
    Jung, Y., Kang, D., Kim, J.: Upper body motion tracking with inertial sensors. In: Proceedings of the International Conference on Robotics and Biomimetics, pp. 1746–1751. IEEE (2010)Google Scholar
  18. 18.
    Kagermann, H., Helbig, J., Hellinger, A., Wahlster, W.: Recommendations for implementing the strategic initiative INDUSTRIE 4.0: securing the future of German manufacturing industry; final report of the industrie 4.0 working group. Acatech - National Acadamy of Science and Engineering (2013)Google Scholar
  19. 19.
    Klein, F., Spieldenner, T., Sons, K., Slusallek, P.: Configurable instances of 3D models for declarative 3D in the web. In: Proceedings of the International Conference on 3D Web Technologies, pp. 71–79. ACM (2014)Google Scholar
  20. 20.
    Krieger, H.U.: An efficient implementation of equivalence relations in OWL via rule and query rewriting. In: Proceedings of the International Conference on Semantic Computing (ICSC 2013), pp. 260–263. IEEE (2013)Google Scholar
  21. 21.
    Krieger, H.U.: Integrating graded knowledge and temporal change in a modal fragment of OWL. In: van den Herik, J., Filipe, J. (eds.) Agents and Artificial Intelligence. Springer, Berlin (2016, in press)Google Scholar
  22. 22.
    Larsson, S., Traum, D.R.: Information state and dialogue management in the TRINDI dialogue move engine toolkit. Nat. Lang. Eng. 6(3&4), 323–340 (2000)CrossRefGoogle Scholar
  23. 23.
    Leitão, P.: Agent-based distributed manufacturing control: a state-of-the-art survey. Eng. Appl. Artif. Intell. 22(7), 979–991 (2009)CrossRefGoogle Scholar
  24. 24.
    Lemburg, J., Mronga, D., Aggarwal, A., de Gea Fernández, J., Ronthaler, M., Kirchner, F.: A robotic platform for building and exploiting digital product memories. In: Wahlster, W. (ed.) SemProM - Foundations of Semantic Product Memories for the Internet of Things. Cognitive Technologies, pp. 91–106. Springer, Berlin (2013)Google Scholar
  25. 25.
    Levesque, H.J., Cohen, P.R., Nunes, J.H.T.: On acting together. In: Proceedings of the International Conference on AI, vol. 1, pp. 94–99. AAAI Press, Boston (1990)Google Scholar
  26. 26.
    Likhachev, M., Ferguson, D., Gordon, G., Stentz, A., Thrun, S.: Anytime search in dynamic graphs. Artif. Intell. 172(14), 1613–1643 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Liu, L., Shell, D.A.: Optimal market-based multi-robot task allocation via strategic pricing. In: Robotics: Science and Systems IX (2013)Google Scholar
  28. 28.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  29. 29.
    Mourkani, S.S., Bleser, G., Schmitz, N., Stricker, D.: A low-cost and light-weight motion tracking suit. In: Proceedings of the International Conference on Ubiquitous Intelligence and Computing, pp. 474–479. IEEE (2013)Google Scholar
  30. 30.
    Nguyen, M.H., Wobcke, W.: A flexible framework for sharedplans. In: Sattar, A., Kang, B.-H. (eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 393–402. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  31. 31.
    Pirkl, G., Hevesi, P., Cheng, J., Lukowicz, P.: mBeacon: accurate, robust proximity detection with smart phones and smart watches using low frequency modulated magnetic fields. In: Proceedings of the EAI International Conference on Body Area Networks, pp. 186–191. ICST (2015)Google Scholar
  32. 32.
    Pirkl, G., Lukowicz, P.: Robust, low cost indoor positioning using magnetic resonant coupling. In: Proceedings of the International Conference on Ubiquitous Computing, pp. 431–440. ACM (2012)Google Scholar
  33. 33.
    Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to sift or surf. In: Proceedings of the International Conference on Computer Vision (ICCV 2011), pp. 2564–2571. IEEE (2011)Google Scholar
  34. 34.
    Scerri, P., Pynadath, D., Johnson, L., Rosenbloom, P., Si, M., Schurr, N., Tambe, M.: A prototype infrastructure for distributed robot-agent-person teams. In: Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS 2003, pp. 433–440. ACM (2003)Google Scholar
  35. 35.
    Schwartz, T., Feld, M., Bürckert, C., Dimitrov, S., Folz, J., Hutter, D., Hevesi, P., Kiefer, B., Krieger, H.U., Lüth, C., Mronga, D., Pirkl, G., Röfer, T., Spieldenner, T., Wirkus, M., Zinnikus, I., Straube, S.: Hybrid teams of humans, robots and virtual agents in a production setting. In: International Conference Intelligent Environments (IE) (2016, accepted)Google Scholar
  36. 36.
    Schwendner, J., Roehr, T.M., Haase, S., Wirkus, M., Manz, M., Arnold, S., Machowinski, J.: The Artemis rover as an example for model based engineering in space robotics. In: Workshop Proceedings of the International Conference on Robotics and Automation (ICRA-2014), p. 7. IEEE (2014)Google Scholar
  37. 37.
    Settembre, G.P., Scerri, P., Farinelli, A., Sycara, K., Nardi, D.: A decentralized approach to cooperative situation assessment in multi-robot systems. In: Proceedings of the International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2008, vol. 1, pp. 31–38. International Foundation for Autonomous Agents and Multiagent Systems (2008)Google Scholar
  38. 38.
    Snodgrass, R.T.: Developing time-oriented database applications in SQL. Morgan Kaufmann, San Francisco (2000)Google Scholar
  39. 39.
    Sons, K., Klein, F., Rubinstein, D., Byelozyorov, S., Slusallek, P.: XML3D: interactive 3D graphics for the web. In: Proceedings of the International Conference on Web 3D Technology, Web3D 2010, pp. 175–184. ACM (2010)Google Scholar
  40. 40.
    Straube, S., Schwartz, T.: Hybrid teams in the digital network of the future - application, architecture and communication. Industrie 4.0 Manag. 2, 41–45 (2016)Google Scholar
  41. 41.
    Tambe, M.: Towards flexible teamwork. J. Artif. Int. Res. 7(1), 83–124 (1997)Google Scholar
  42. 42.
    Täubig, H., Frese, U.: A new library for real-time continuous collision detection. In: Proceedings of the German Conference on Robotics, pp. 108–112. VDE (2012)Google Scholar
  43. 43.
    Van Dyke Parunak, H., Baker, A.D., Clark, S.J.: The AARIA agent architecture: an example of requirements-driven agent-based system design. In: Proceedings of the International Conference on Autonomous Agents, AGENTS 1997, pp. 482–483. ACM (1997)Google Scholar
  44. 44.
    Wirkus, M.: Towards robot-independent manipulation behavior description. In: Proceedings of the International Workshop on Domain-Specific Languages and Models for Robotic Systems (2014). arXiv:1412.3247
  45. 45.
    Zhang, J., Sclaroff, S.: Exploiting surroundedness for saliency detection: a boolean map approach. IEEE Trans. Pattern Anal. Mach. Intell. 38(5), 889–902 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Tim Schwartz
    • 1
    Email author
  • Ingo Zinnikus
    • 1
  • Hans-Ulrich Krieger
    • 1
  • Christian Bürckert
    • 1
  • Joachim Folz
    • 1
  • Bernd Kiefer
    • 1
  • Peter Hevesi
    • 1
  • Christoph Lüth
    • 1
  • Gerald Pirkl
    • 1
  • Torsten Spieldenner
    • 1
    • 2
  • Norbert Schmitz
    • 1
  • Malte Wirkus
    • 1
  • Sirko Straube
    • 1
  1. 1.German Research Center for Artificial Intelligence, DFKI GmbHKaiserslauternGermany
  2. 2.Saarbrücken Graduate School of Computer ScienceSaarbückenGermany

Personalised recommendations