Commonsense Reasoning Meets Theorem Proving

  • Ulrich Furbach
  • Claudia SchonEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9872)


The area of commonsense reasoning aims at the creation of systems able to simulate the human way of rational thinking. This paper describes the use of automated reasoning methods for tackling commonsense reasoning benchmarks. For this we use a benchmark suite introduced in literature. Our goal is to use general purpose background knowledge without domain specific hand coding of axioms, such that the approach and the result can be used as well for other domains in mathematics and science. Furthermore, we discuss the modeling of normative statements in commonsense reasoning and in robot ethics (This paper is an extended version of the informal proceedings [9] and [10]).


Background Knowledge Machine Learning Technique Ethical Code Predicate Symbol Deontic Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Basile, V., Cabrio, E., Gandon, F.: Building a general knowledge base of physical objects for robots. In: The Semantic Web. Latest Advances and New Domains (2016)Google Scholar
  2. 2.
    Bender, M., Pelzer, B., Schon, C.: System description: E-KRHyper 1.4 -extensions for unique names and description logic. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 126–134. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Bringsjord, S., Arkoudas, K., Bello, P.: Toward a general logicist methodology for engineering ethically correct robots. IEEE Intell. Syst. 21(4), 38–44 (2006)CrossRefGoogle Scholar
  4. 4.
    Curran, J.R., Clark, S., Bos, J.: Linguistically motivated large-scale NLP with C&C and boxer. In Proceedings of the ACL 2007 Demo and Poster Sessions, pp. 33–36, Prague, Czech Republic (2007)Google Scholar
  5. 5.
    Ferrucci, D.A.: IBM’s Watson, DeepQA. SIGARCH Computer Architecture News, vol. 39, no. 3, June 2011Google Scholar
  6. 6.
    Furbach, U., Glöckner, I., Helbig, H., Pelzer, B.: Logic-based question answering. KI - Künstliche Intelligenz, 2010, Special Issue on Automated Deduction, February 2010Google Scholar
  7. 7.
    Furbach, U., Gordon, A., Schon, C.: Tackling benchmark problems for commonsense reasoning. In: Proceedings of Bridging - Workshop on Bridging the Gap between Human and Automated Reasoning (2015)Google Scholar
  8. 8.
    Furbach, U., Pelzer, B., Schon, C.: Automated reasoning in the wild. In: Felty, A.P., Middeldorp, A. (eds.) CADE-25. LNCS, vol. 9195, pp. 55–72. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  9. 9.
    Furbach, U., Schon, C.: Commonsense reasoning meets theorem proving. In: Proceedings of the 1st Conference on Artificial Intelligence and Theorem Proving AITP 2016, Obergurgl, Austria (2016)Google Scholar
  10. 10.
    Furbach, U., Schon, C.: Commonsense reasoning meets theorem proving. In: Proceedings of Bridging-20016 - Workshop on Bridging the Gap between Human and Automated Reasoning (2016, to appear)Google Scholar
  11. 11.
    Gordon, A.S.: Commonsense interpretation of triangle behavior. In: Schuurmans, D. Wellman, M.P. (eds.) Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, 12–17 February 2016, Phoenix, Arizona, USA, pp. 3719–3725. AAAI Press (2016)Google Scholar
  12. 12.
    Grassi, M.: Biometric ID Management and Multimodal Communication: Joint COST 2101 and 2102 International Conference, BioID_MultiComm 2009, Madrid, Spain, 16–18 September 2009, Proceedings, Chapter Developing HEO Human Emotions Ontology, pp. 244–251. Springer, Heidelberg (2009)Google Scholar
  13. 13.
    Hall, M.A., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. 11(1), 10–18 (2009)CrossRefGoogle Scholar
  14. 14.
    Hastings, J., Ceusters, W., Smith, B., Mulligan, K.: The emotion ontology: enabling interdisciplinary research in the affective sciences. In: Beigl, M., Christiansen, H., Roth-Berghofer, T.R., Kofod-Petersen, A., Coventry, K.R., Schmidtke, H.R. (eds.) CONTEXT 2011. LNCS, vol. 6967, pp. 119–123. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Kaliszyk, C., Schulz, S., Urban, J., Vyskocil, J.: System description: E.T. 0.1. In: Felty, A.P., Middeldorp, A. (eds.) CADE-25. LNCS, vol. 9195, pp. 389–398. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  16. 16.
    Lenat, D.B.: Cyc: a large-scale investment in knowledge infrastructure. Commun. ACM 38(11), 33–38 (1995)CrossRefGoogle Scholar
  17. 17.
    Levesque, H.J.: The winograd schema challenge. In: Logical Formalizations of Commonsense Reasoning, Papers from the 2011 AAAI Spring Symposium, Technical report SS-11-06, Stanford, California, USA, 21-23 March 2011, AAAI (2011)Google Scholar
  18. 18.
    Liu, H., Singh, P.: ConceptNet – a practical commonsense reasoning tool-kit. BT Technol. J. 22(4), 211–226 (2004)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Maslan, N., Roemmele, M., Gordon, A.S.: One hundred challenge problems for logical formalizations of commonsense psychology. In: Twelfth International Symposium on Logical Formalizations of Commonsense Reasoning, Stanford, CA (2015)Google Scholar
  20. 20.
    Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  21. 21.
    Moro, A., Raganato, A., Navigli, R.: Entity linking meets word sense disambiguation: a unified approach. Trans. Assoc. Comput. Linguist. (TACL) 2, 231–244 (2014)Google Scholar
  22. 22.
    Murakami, Y.: Utilitarian deontic logic. In: Proceedings of the Fifth International Conference on Advances in Modal Logic AiML 2004, pp. 288–302 (2004)Google Scholar
  23. 23.
    Navigli, R., Ponzetto, S.P.: BabelNet: the automatic construction, evaluation and application of a wide-coverage multilingual semantic network. Artif. Intell. 193, 217–250 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Niles, I., Pease, A.: Towards a standard upper ontology. In: Proceedings of the International Conference on Formal Ontology in Information Systems, vol. 2001, pp. 2–9. ACM (2001)Google Scholar
  25. 25.
    Pease, A.: Ontology: A Practical Guide. Articulate Software Press, Angwin (2011)Google Scholar
  26. 26.
    Roemmele, M., Bejan, C.A., Gordon, A.S.: Choice of plausible alternatives: an evaluation of commonsense causal reasoning. In: AAAI Spring Symposium: Logical Formalizations of Commonsense Reasoning (2011)Google Scholar
  27. 27.
    Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a large ontology from Wikipedia and WordNet. Web Semant. 6(3), 203–217 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Universität Koblenz-LandauMainzGermany

Personalised recommendations