Identifying Individual Facial Expressions by Deconstructing a Neural Network

  • Farhad Arbabzadah
  • Grégoire Montavon
  • Klaus-Robert Müller
  • Wojciech Samek
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9796)

Abstract

This paper focuses on the problem of explaining predictions of psychological attributes such as attractiveness, happiness, confidence and intelligence from face photographs using deep neural networks. Since psychological attribute datasets typically suffer from small sample sizes, we apply transfer learning with two base models to avoid overfitting. These models were trained on an age and gender prediction task, respectively. Using a novel explanation method we extract heatmaps that highlight the parts of the image most responsible for the prediction. We further observe that the explanation method provides important insights into the nature of features of the base model, which allow one to assess the aptitude of the base model for a given transfer learning task. Finally, we observe that the multiclass model is more feature rich than its binary counterpart. The experimental evaluation is performed on the 2222 images from the 10k US faces dataset containing psychological attribute labels as well as on a subset of KDEF images.

References

  1. 1.
    Arras, L., Horn, F., Montavon, G., Müller, K.R., Samek, W.: Explaining predictions of non-linear classifiers in NLP. In: Proceedings of the Workshop on Representation Learning for NLP at Association for Computational Linguistics Conference (ACL), pp. 1–7 (2016)Google Scholar
  2. 2.
    Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10(7), e0130140 (2015)CrossRefGoogle Scholar
  3. 3.
    Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K., Müller, K.R.: How to explain individual classification decisions. J. Mach. Learn. Res. 11, 1803–1831 (2010)MathSciNetMATHGoogle Scholar
  4. 4.
    Bainbridge, W.A., Isola, P., Oliva, A.: The intrinsic memorability of face photographs. J. Exp. Psychol. Gen. 142(4), 1323 (2013)CrossRefGoogle Scholar
  5. 5.
    Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41–75 (1997)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.: DeCAF: a deep convolutional activation feature for generic visual recognition (2013). arXiv preprint. arXiv:1310.1531
  7. 7.
    Dosovitskiy, A., Brox, T.: Inverting visual representations with convolutional networks (2015). arXiv preprint. arXiv:1506.02753
  8. 8.
    Goeleven, E., De Raedt, R., Leyman, L., Verschuere, B.: The Karolinska directed emotional faces: a validation study. Cogn. Emot. 22(6), 1094–1118 (2008)CrossRefGoogle Scholar
  9. 9.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. (2015). arXiv:1512.03385
  10. 10.
    Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding. In: Proceedings of the ACM International Conference on Multimedia, pp. 675–678. ACM (2014)Google Scholar
  11. 11.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)Google Scholar
  12. 12.
    Landecker, W., Thomure, M.D., Bettencourt, L.M.A., Mitchell, M., Kenyon, G.T., Brumby, S.P.: Interpreting individual classifications of hierarchical networks. In: IEEE Symposium on Computational Intelligence and Data Mining (CIDM), pp. 32–38 (2013)Google Scholar
  13. 13.
    Lapuschkin, S., Binder, A., Montavon, G., Müller, K.R., Samek, W.: Analyzing classifiers: fisher vectors and deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2912–2920 (2016)Google Scholar
  14. 14.
    Lapuschkin, S., Binder, A., Montavon, G., Müller, K.R., Samek, W.: The layer-wise relevance propagation toolbox for artificial neural networks. J. Mach. Learn. Res. 17(114), 1–5 (2016)MathSciNetMATHGoogle Scholar
  15. 15.
    Le Cun, B.B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Handwritten digit recognition with a back-propagation network. In: Advances in Neural Information Processing Systems (1990)Google Scholar
  16. 16.
    LeCun, Y.A., Bottou, L., Orr, G.B., Müller, K.-R.: Efficient backprop. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade, 2nd edn. LNCS, vol. 7700, pp. 9–48. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Levi, G., Hassner, T.: Age and gender classification using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 34–42 (2015)Google Scholar
  18. 18.
    Montavon, G., Bach, S., Binder, A., Samek, W., Müller, K.R.: Explaining nonlinear classification decisions with deep taylor decomposition (2015). arXiv:1512.02479
  19. 19.
    Nguyen, A., Yosinski, J., Clune, J.: Multifaceted feature visualization: Uncovering the different types of features learned by each neuron in deep neural networks. arXiv preprint (2016). arXiv:1602.03616
  20. 20.
    Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)CrossRefGoogle Scholar
  21. 21.
    Samek, W., Binder, A., Montavon, G., Bach, S., Müller, K.R.: Evaluating the visualization of what a deep neural network has learned (2015). arXiv:1509.06321
  22. 22.
    Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. In: ICLR Workshop (2014)Google Scholar
  23. 23.
    Sturm, I., Bach, S., Samek, W., Müller, K.R.: Interpretable deep neural networks for single-trial eeg classification (2016). arXiv:1604.08201
  24. 24.
    Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Advances in Neural Information Processing Systems, pp. 3320–3328 (2014)Google Scholar
  25. 25.
    Yu, W., Yang, K., Bai, Y., Yao, H., Rui, Y.: Visualizing and comparing convolutional neural networks. arXiv preprint (2014). arXiv:1412.6631
  26. 26.
    Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part I. LNCS, vol. 8689, pp. 818–833. Springer, Heidelberg (2014)Google Scholar
  27. 27.
    Zintgraf, L.M., Cohen, T.S., Welling, M.: A new method to visualize deep neural networks (2016). arXiv preprint. arXiv:1603.02518

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Farhad Arbabzadah
    • 1
  • Grégoire Montavon
    • 1
  • Klaus-Robert Müller
    • 1
    • 2
  • Wojciech Samek
    • 3
  1. 1.Machine Learning GroupTechnische Universität BerlinBerlinGermany
  2. 2.Department of Brain and Cognitive EngineeringKorea UniversitySeoulKorea
  3. 3.Machine Learning GroupFraunhofer Heinrich Hertz InstituteBerlinGermany

Personalised recommendations