Advertisement

Precise and Robust Line Detection for Highly Distorted and Noisy Images

  • Dominik Wolters
  • Reinhard Koch
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9796)

Abstract

This article presents a method to detect lines in fisheye and distorted perspective images. The detection is performed with subpixel accuracy. By detecting lines in the original images without warping the image with a reverse distortion, the detection accuracy can be noticeably improved. The combination of the edge detection and the line detection to a single step provides a more robust and more reliable detection of larger line segments.

Keywords

Line Segment Detection Accuracy Anchor Point Gradient Magnitude Edge Pixel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Akinlar, C., Topal, C.: EDLines: a real-time line segment detector with a false detection control. Pattern Recogn. Lett. 32(13), 1633–1642 (2011)CrossRefGoogle Scholar
  2. 2.
    Ballard, D.H.: Generalizing the Hough transform to detect arbitrary shapes. Pattern Recogn. 13(2), 111–122 (1981)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bay, H., Ferrari, V., Van Gool, L.: Wide-baseline stereo matching with line segments. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 329–336. IEEE (2005)Google Scholar
  4. 4.
    Bazin, J.C., Demonceaux, C., Vasseur, P.: Fast central catadioptric line extraction. In: Martí, J., Benedí, J.M., Mendonça, A.M., Serrat, J. (eds.) IbPRIA 2007. LNCS, vol. 4478, pp. 25–32. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-72849-8_4 CrossRefGoogle Scholar
  5. 5.
    Boutteau, R., Savatier, X., Bonardi, F., Ertaud, J.Y.: Road-line detection and 3d reconstruction using fisheye cameras. In: 2013 16th International IEEE Conference on Intelligent Transportation Systems-(ITSC), pp. 1083–1088. IEEE (2013)Google Scholar
  6. 6.
    Bukhari, F., Dailey, M.N.: Automatic radial distortion estimation from a single image. J. Math. Imaging Vis. 45(1), 31–45 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Burns, J.B., Hanson, A.R., Riseman, E.M.: Extracting straight lines. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 8(4), 425–455 (1986)CrossRefGoogle Scholar
  8. 8.
    Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 8(6), 679–698 (1986)CrossRefGoogle Scholar
  9. 9.
    Ceylan, D., Mitra, N.J., Zheng, Y., Pauly, M.: Coupled structure-from-motion and 3D symmetry detection for urban facades. ACM Trans. Graph. (TOG) 33(1), 2 (2014)CrossRefzbMATHGoogle Scholar
  10. 10.
    David, P., DeMenthon, D.: Object recognition in high clutter images using line features. In: Tenth IEEE International Conference on Computer Vision, ICCV 2005, vol. 2, pp. 1581–1588 (2005)Google Scholar
  11. 11.
    Desolneux, A., Moisan, L., Morel, J.M.: From Gestalt Theory to Image Analysis, Interdisciplinary Applied Mathematics, vol. 34. Springer, New York (2008)CrossRefGoogle Scholar
  12. 12.
    Fernandes, L.A.F., Oliveira, M.M.: Real-time line detection through an improved hough transform voting scheme. Pattern Recogn. 41(1), 299–314 (2008)CrossRefzbMATHGoogle Scholar
  13. 13.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)MathSciNetCrossRefGoogle Scholar
  14. 14.
    von Gioi, R.G., Jakubowicz, J., Morel, J.M., Randall, G.: LSD: a line segment detector. Image Process Line 2, 35–55 (2012)CrossRefGoogle Scholar
  15. 15.
    Kannala, J., Brandt, S.S.: A generic camera model and calibration method for conventional, wide-angle, and fish-eye lenses. IEEE Trans. Pattern Anal. Mach. Intell. 28(8), 1335–1340 (2006)CrossRefGoogle Scholar
  16. 16.
    Taylor, C.J., Kriegman, D.J.: Structure and motion from line segments in multiple images. IEEE Trans. Pattern Anal. Mach. Intell. 17(11), 1021–1032 (1995)CrossRefGoogle Scholar
  17. 17.
    Wang, L.L., Tsai, W.H.: Camera calibration by vanishing lines for 3-D computer vision. IEEE Trans. Pattern Anal. Mach. Intell. 13(4), 370–376 (1991)CrossRefGoogle Scholar
  18. 18.
    Zhang, L., Koch, R.: Structure and motion from line correspondences: representation, projection, initialization and sparse bundle adjustment. J. Vis. Commun. Image Represent. 25(5), 904–915 (2014)CrossRefGoogle Scholar
  19. 19.
    Zhang, L., Xu, C., Lee, K.-M., Koch, R.: Robust and efficient pose estimation from line correspondences. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part III. LNCS, vol. 7726, pp. 217–230. Springer, Heidelberg (2013)Google Scholar
  20. 20.
    Zhang, M., Yao, J., Xia, M., Li, K., Zhang, Y., Liu, Y.: Line-based multi-label energy optimization for fisheye image rectification and calibration. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4137–4145, June 2015Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceKiel UniversityKielGermany

Personalised recommendations