Advertisement

Medical Knowledge Representation for Evaluation of Patient’s State Using Complex Indicators

  • Mikhail Lushnov
  • Vyacheslav Kudashov
  • Alexander Vodyaho
  • Maxim Lapaev
  • Nataly Zhukova
  • Denis Korobov
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 649)

Abstract

In the paper a hierarchy of formalized models for data, information and knowledge representation in medical domain is proposed. The models allow solving problems of calculation, evaluation and analysis of complex indicators of patient’s organism state. The model hierarchy is composed of raw objective numerical data description, the description of the outputs of statistical and intelligent processing and analyses procedures. To build the model a set of transformations are defined according to JDL fusion model adapted for medical objective data. Models are implemented as a system of ontologies. Experimental research of the models and transformations was conducted on historical data of Almazov Medicine research center (Saint-Petersburg, Russia).

Keywords

Knowledge representation Medical scenarios Measurement data processing and analysis 

References

  1. 1.
    Petlenko V.P., Popov A.S.: Philosophical problems of medicine (1978)Google Scholar
  2. 2.
    USA National Medical Library. https://www.nlm.nih.gov/
  3. 3.
  4. 4.
    Neznanov, A.A., Starichkova, Y.V.: Development of classification of clinical diagnoses in medical information systems, Business Informatics (2015)Google Scholar
  5. 5.
    Neznanov, A.A.: Modern mathematical models of medical informatics: the statistics to mining (2016)Google Scholar
  6. 6.
  7. 7.
  8. 8.
  9. 9.
  10. 10.
  11. 11.
  12. 12.
  13. 13.
  14. 14.
  15. 15.
  16. 16.
    Steinberg, A.N., Bowman, C.L., White, F.E.: Revisions to the JDL data fusion model. In: The Joint NATO/IRIS Conference, Quebec (1998)Google Scholar
  17. 17.
    Zhukova, N.A., Pankin, A.V.: Principles of managing the processing and analysis of multi-dimensional measurements in IGIS. In: Proceedings of the Information Technologies in Man-Agement, Saint-Petersburg, 9–11 October (2012)Google Scholar
  18. 18.
    Shanin Yu., N.: Postoperative intensive therapy (1978)Google Scholar
  19. 19.
    Mirkin, B.G., Kupershtok, B.L.: Amount of internal relations classification as an indicator of quality (1976)Google Scholar
  20. 20.
    Mandel ID.: Cluster analysis. Moscow, Finance and Statistics (1988)Google Scholar
  21. 21.
    Multivariate statistical analysis: Timashevicha, V.N. (ed.). Moscow, UNITY (1999)Google Scholar
  22. 22.
    Piatetsky-Shapiro, G.: From Data Mining to Knowledge Discovery in Databases (1996)Google Scholar
  23. 23.
  24. 24.
  25. 25.
    Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning Tools and Techniques (2011)Google Scholar
  26. 26.

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Mikhail Lushnov
    • 1
  • Vyacheslav Kudashov
    • 1
  • Alexander Vodyaho
    • 1
  • Maxim Lapaev
    • 1
  • Nataly Zhukova
    • 1
  • Denis Korobov
    • 1
  1. 1.Information Systems DepartmentSaint-Petersburg State Technical UniversitySaint PetersburgRussia

Personalised recommendations