Requirements to Modern Semantic Search Engine

  • Ricardo UsbeckEmail author
  • Michael Röder
  • Peter Haase
  • Artem Kozlov
  • Muhammad Saleem
  • Axel-Cyrille Ngonga Ngomo
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 649)


Since the introduction of computing machines into companies and industries, searching large enterprise data is an open challenge including diverse and distributed datasets, missing alignment of vocabularies within divisions as well as data isolated in format silos. In this article, we report the requirements of commercial enterprises to the next generation of semantic search engine for large, distributed data. We describe our elicitation process to gather end user requirements, the challenges arising for real-world use cases as well as how such an implementation of this paradigm can be benchmarked. In the end, we present the design of the DIESEL search engine, which aims to implement the requirements of commercial enterprise to semantic search.


Search Engine Resource Description Framework Conjunctive Query Knowledge Graph Enterprise Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been supported by Eurostars projects DIESEL (E!9367) and QAMEL (E!9725) as well as the European Union’s H2020 research and innovation action HOBBIT (GA 688227).


  1. 1.
    Bhagdev, R., Chapman, S., Ciravegna, F., Lanfranchi, V., Petrelli, D.: Hybrid search: effectively combining keywords and semantic searches. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 554–568. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Bühmann, L., Usbeck, R., Ngonga Ngomo, A.-C., Saleem, M., Both, A., Crescenzi, V., Merialdo, P., Qiu, D.: Web-scale extension of RDF knowledge bases from templated websites. In: Mika, P., et al. (eds.) ISWC 2014, Part I. LNCS, vol. 8796, pp. 66–81. Springer, Heidelberg (2014)Google Scholar
  3. 3.
    Giese, M., Soylu, A., Vega-Gorgojo, G., Waaler, A., Haase, P., Jiménez-Ruiz, E., Lanti, D., Rezk, M., Xiao, G., Özgür, L.Ö., Rosati, R.: Optique: zooming in on big data. IEEE Comput. 48(3), 60–67 (2015)CrossRefGoogle Scholar
  4. 4.
    Hoffart, J., Altun, Y., Weikum, G.: Discovering emerging entities with ambiguous names. In: Proceedings of the 23rd International Conference on World Wide Web, WWW 2014, pp. 385–396. ACM, New York (2014)Google Scholar
  5. 5.
    Khan, Y., Saleem, M., Iqbal, A., Mehdi, M., Hogan, A., Hasapis, P., Ngonga Ngomo, A.-C., Decker, S., Sahay, R.: SAFE: policy aware SPARQL query federation over RDF data cubes. In: Semantic Web Applications and Tools for Life Sciences (SWAT4LS) (2014)Google Scholar
  6. 6.
    Lehmann, J., Bühmann, L.: AutoSPARQL: let users query your knowledge base. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 63–79. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Lopez, V., Nikolov, A., Fernandez, M., Sabou, M., Uren, V., Motta, E.: Merging and ranking answers in the semantic web: the wisdom of crowds. In: Gómez-Pérez, A., Yu, Y., Ding, Y. (eds.) ASWC 2009. LNCS, vol. 5926, pp. 135–152. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Lukovnikov, D., Ngonga-Ngomo, A.-C.: Sessa - keyword-based entity search through coloured spreading activation. In: NLIWoD@ISWC (2014)Google Scholar
  9. 9.
    Mendes, P.N., Jakob, M., García-Silva, A., Bizer, C.: DBpedia spotlight: shedding light on the web of documents. In: Proceedings of the 7th International Conference on Semantic Systems, pp. 1–8. ACM (2011)Google Scholar
  10. 10.
    Ngonga Ngomo, A.-C., Bühmann, L., Unger, C., Lehmann, J., Gerber, D.: SPARQL2NL - Verbalizing SPARQL queries. In: Proceedings of WWW 2013 Demos, pp. 329–332 (2013)Google Scholar
  11. 11.
    Nikolov, A., Schwarte, A., Hütter, C.: FedSearch: efficiently combining structured queries and full-text search in a SPARQL federation. In: Alani, H., et al. (eds.) ISWC 2013, Part I. LNCS, vol. 8218, pp. 427–443. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Saleem, M., Ali, M.I., Verborgh, R., Ngonga Ngomo, A.-C.: Federated query processing over linked data. In: Tutorial at ISWC (2015)Google Scholar
  13. 13.
    Saleem, M., Ngonga Ngomo, A.-C., Xavier Parreira, J., Deus, H.F., Hauswirth, M.: DAW: duplicate-aware federated query processing over the web of data. In: Alani, H., et al. (eds.) ISWC 2013, Part I. LNCS, vol. 8218, pp. 574–590. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Shekarpour, S., K. Höffner, J. Lehmann, Auer, S.: Keyword query expansion on linked data using linguistic and semantic features. In: 7th IEEE International Conference on Semantic Computing, 16–18 September 2013, Irvine, California, USA (2013)Google Scholar
  15. 15.
    Shekarpour, S., Ngonga Ngomo, A.-C., Auer, S.: Question answering on interlinked data. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 1145–1156. International World Wide Web Conferences Steering Committee (2013)Google Scholar
  16. 16.
    Speck, R., Ngonga Ngomo, A.-C.: Ensemble learning for named entity recognition. In: Mika, P., et al. (eds.) ISWC 2014, Part I. LNCS, vol. 8796, pp. 519–534. Springer, Heidelberg (2014)Google Scholar
  17. 17.
    Tran, T., Wang, H., Rudolph, S., Cimiano, P.: Top-k exploration of query candidates for efficient keyword search on graph-shaped (rdf) data. In: IEEE 25th International Conference on Data Engineering, ICDE 2009, pp. 405–416. IEEE (2009)Google Scholar
  18. 18.
    Unger, C., Forascu, C., Lopez, V., Ngomo, A.N., Cabrio, E., Cimiano, P., Walter, S.: Question answering over linked data (QALD-5). In: CLEF (2015)Google Scholar
  19. 19.
    Usbeck, R.: Combining linked data and statistical information retrieval. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 845–854. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  20. 20.
    Usbeck, R., Ngonga Ngomo, A.-C., Röder, M., Gerber, D., Coelho, S.A., Auer, S., Both, A.: AGDISTIS - graph-based disambiguation of named entities using linked data. In: Mika, P., et al. (eds.) ISWC 2014, Part I. LNCS, vol. 8796, pp. 457–471. Springer, Heidelberg (2014)Google Scholar
  21. 21.
    Usbeck, R., Röder, M., Ngonga Ngomo, A.-C., Baron, C., Both, A., Brümmer, M., Ceccarelli, D., Cornolti, M., Cherix, D., Eickmann, B., Ferragina, P., Lemke, C., Moro, A., Navigli, R., Piccinno, F., Rizzo, G., Sack, H., Speck, R., Troncy, R., Waitelonis, J., Wesemann, L.: GERBIL - general entity annotation benchmark framework. In: 24th WWW Conference (2015)Google Scholar
  22. 22.
    Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM 57(10), 78–85 (2014)CrossRefGoogle Scholar
  23. 23.
    Yoo, D.: Hybrid query processing for personalized information retrieval on the semantic web. Knowl. Base Syst. 27, 211–218 (2012)CrossRefGoogle Scholar
  24. 24.
    Zhang, L., Liu, Q., Zhang, J., Wang, H., Pan, Y., Yu, Y.: Semplore: an IR approach to scalable hybrid query of semantic web data. In: Aberer, K., et al. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 652–665. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ricardo Usbeck
    • 1
    Email author
  • Michael Röder
    • 1
  • Peter Haase
    • 2
  • Artem Kozlov
    • 2
  • Muhammad Saleem
    • 1
  • Axel-Cyrille Ngonga Ngomo
    • 1
  1. 1.AKSW GroupUniversity of LeipzigLeipzigGermany
  2. 2.metaphacts GmbHWalldorfGermany

Personalised recommendations