Ontology-Based Information Extraction for Populating the Intelligent Scientific Internet Resources

  • Irina R. AkhmadeevaEmail author
  • Yury A. Zagorulko
  • Dmitry I. Mouromtsev
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 649)


The paper considers the problems of ontology-based collection of information from the Internet about scientific activity for the population of the Intelligent Scientific Internet Resource. An approach to automating this process is proposed, which combines metasearch and information extraction methods based on ontology, thesaurus and pattern technique. In accordance with the approach, specific methods of information extraction adjustable to the knowledge area and types of information resources are developed for every type of entities (ontology class). Each of these methods includes a set of query templates and a set of information extraction patterns. The query templates constructed on the basis of an ontology class description are used to generate queries to search engines in order to collect web documents containing information about the individuals of this class. Web documents gathered using metasearch methods are analyzed by applying the information extraction patterns. For every kind of information to be extracted, these patterns give text markers defining their position in a web document. The patterns are generated on the basis of an ontology taking into consideration the structure of web documents. Several patterns can be combined together to extract information about related entities. To improve the recall of information extraction, the patterns use alternative terms in different languages from the thesaurus (synonyms and hyponyms) to describe the markers. Experiments showed that the proposed approach allows us to achieve an acceptable recall of the extraction from the Internet of information about scientific activity.


Scientific activity Knowledge area Ontology Thesaurus Information extraction Metasearch 



The authors are grateful to the Russian Foundation for Basic Research (grant № 16-07-00569) for financial support of this work.


  1. 1.
    Zagorulko, Y., Zagorulko, G.: Ontology-based technology for development of intelligent scientific internet resources. In: Fujita, H., Guizzi, G. (eds.) SoMeT 2015. CCIS, vol. 532, pp. 227–241. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  2. 2.
    Guarino, N.: Formal ontology in information systems. In: Proceedings of FOIS 1998, Trento, Italy. IOS Press, Amsterdam, pp. 3–15 (1998)Google Scholar
  3. 3.
    Zhai, Y., Liu, B.: Extracting web data using instance-based learning. In: Ngu, A.H., Kitsuregawa, M., Neuhold, E.J., Chung, J.-Y., Sheng, Q.Z. (eds.) WISE 2005. LNCS, vol. 3806, pp. 318–331. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Meng, W., Yu, C., Liu, K.L.: Building efficient and effective metasearch engines. ACM Comput. Surv. (CSUR) 34(1), 48–89 (2002)CrossRefGoogle Scholar
  5. 5.
    Manning, C.D., Raghavan, P., Schutze, H.: An Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)CrossRefzbMATHGoogle Scholar
  6. 6.
    Gentile, A.L., et al.: Unsupervised wrapper induction using linked data. In: Proceedings of the Seventh International Conference on Knowledge Capture, pp. 41–48. ACM (2013)Google Scholar
  7. 7.
    Kohlschütter, C., Fankhauser, P., Nejdl, W.: Boilerplate detection using shallow text features. In: Proceedings of the Third ACM International Conference on Web Search and Data Mining, pp. 441–450. ACM (2010)Google Scholar
  8. 8.
    Baroni, M., et al.: Cleaneval: a competition for cleaning web pages. In: Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC 2008) (2008)Google Scholar
  9. 9.
    Evert, S.: A lightweight and efficient tool for cleaning web pages. In: Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC 2008) (2008)Google Scholar
  10. 10.
    Ferrara, E., De Meo, P., Fiumara, G., Baumgartner, R.: Web data extraction, applications and techniques: a survey. Knowl.-Based Syst. 70, 301–323 (2014)CrossRefGoogle Scholar
  11. 11.
    Bernabe-Moreno, J., Tejeda-Lorente, A., Porcel, C., Fujita, H., Herrera-Viedma, E.: CARESOME: a system to enrich marketing customers acquisition and retention campaigns using social media information. Knowl.-Based Syst. 80, 163–179 (2015)CrossRefGoogle Scholar
  12. 12.
    Cobo, M.J., Martinez, M.A., Gutierrez-Salcedo, M., Fujita, H., Herrera-Viedma, E.: 25 years at knowledge-based systems: a bibliometric analysis. Knowl.-Based Syst. 80, 3–13 (2015)CrossRefGoogle Scholar
  13. 13.
    Wimalasuriya, D.C., Dou, D.: Ontology-based information extraction: an introduction and a survey of current approaches. J. Inf. Sci. 36(3), 306–323 (2010)CrossRefGoogle Scholar
  14. 14.
    Saggion, H., Funk, A., Maynard, D., Bontcheva, K.: Ontology-based information extraction for business intelligence. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 843–856. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    McDowell, L.K., Cafarella, M.: Ontology-driven information extraction with OntoSyphon. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 428–444. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Cimiano, P., Handschuh, S., Staab, S.: Towards the self-annotating web. In: Proceedings of the 13th International Conference on World Wide Web, pp. 462–471. ACM (2004)Google Scholar
  17. 17.
    Buitelaar, P., et al.: Ontology-based information extraction with soba. In: Proceedings of the International Conference on Language Resources and Evaluation (LREC) (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Irina R. Akhmadeeva
    • 1
    Email author
  • Yury A. Zagorulko
    • 1
  • Dmitry I. Mouromtsev
    • 2
  1. 1.A.P. Ershov Institute of Informatics SystemsSiberian Branch of the Russian Academy of SciencesNovosibirskRussia
  2. 2.ITMO UniversitySt. PetersburgRussia

Personalised recommendations