Advertisement

Probabilistic Spatial Reasoning in Constraint Logic Programming

  • Carl Schultz
  • Mehul Bhatt
  • Jakob Suchan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9858)

Abstract

In this paper we present a novel framework and full implementation of probabilistic spatial reasoning within a Logic Programming context. The crux of our approach is extending Probabilistic Logic Programming (based on distribution semantics) to support reasoning over spatial variables via Constraint Logic Programming. Spatial reasoning is formulated as a numerical optimisation problem, and we implement our approach within ProbLog 1. We demonstrate a range of powerful features beyond what is currently provided by existing probabilistic and spatial reasoning tools.

Keywords

Probabilistic Logic Programming Constraint Logic Programming Declarative spatial reasoning 

References

  1. 1.
    Aiello, M., Pratt-Hartmann, I.E., van Johan Benthem, F.A.K.: Handbook of Spatial Logics. Springer, Secaucus (2007)CrossRefzbMATHGoogle Scholar
  2. 2.
    Arnon, D.S., Collins, G.E., McCallum, S.: Cylindrical algebraic decomposition I: the basic algorithm. SIAM J. Comput. 13(4), 865–877 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bhatt, M., Lee, J.H., Schultz, C.: CLP(QS): a declarative spatial reasoning framework. In: Egenhofer, M., Giudice, N., Moratz, R., Worboys, M. (eds.) COSIT 2011. LNCS, vol. 6899, pp. 210–230. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Bouhineau, D.: Solving geometrical constraint systems using CLP based on linear constraint solver. In: Calmet, J., Campbell, J.A., Pfalzgraf, J. (eds.) AISMC-3. LNCS, vol. 1138, pp. 274–288. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  5. 5.
    Byrd, R.H., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16(5), 1190–1208 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cohn, A.G., Gotts, N.M.: The ‘egg-yolk’ representation of regions with indeterminate boundaries. Geogr. Objects Indeterminate Boundaries 2, 171–187 (1996)Google Scholar
  7. 7.
    de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    De Raedt, L., Kimmig, A., Toivonen, H.: Problog: a probabilistic prolog and its application in link discovery. In: IJCAI, vol. 7, pp. 2462–2467 (2007)Google Scholar
  9. 9.
    Gantner, Z., Westphal, M., Wölfl, S.: GQR-A fast reasoner for binary qualitative constraint calculi. In: Proceedings of AAAI, vol. 8 (2008)Google Scholar
  10. 10.
    Ge, J.-X., Chou, S.-C., Gao, X.-S.: Geometric constraint satisfaction using optimization methods. Comput. Aided Des. 31(14), 867–879 (1999)CrossRefzbMATHGoogle Scholar
  11. 11.
    Girlea, C., Amir, E.: Probabilistic region connection calculus. In: Workshop on Spatio-temporal Dynamics, Co-located at the European Conference on Artifcial Intelligence (ECAI 2012), pp. 62–67 (2012)Google Scholar
  12. 12.
    Gutmann, B.: On continuous distributions and parameter estimation in probabilistic logic programs. Ph.D. dissertation, Ph. D thesis, KULeuven (2011)Google Scholar
  13. 13.
    Jaffar, J., Michaylov, S., Stuckey, P.J., Yap, R.H.C.: The CLP (R) language and system. ACM Trans. Program. Lang. Syst. (TOPLAS) 14(3), 339–395 (1992)CrossRefGoogle Scholar
  14. 14.
    Kapur, D., Mundy, J.L. (eds.): Geometric Reasoning. MIT Press, Cambridge (1988)Google Scholar
  15. 15.
    Ligozat, G.: Qualitative Spatial and Temporal Reasoning. Wiley-ISTE, London (2011)zbMATHGoogle Scholar
  16. 16.
    Pesant, G., Boyer, M.: Reasoning about solids using constraint logic programming. J. Autom. Reason. 22(3), 241–262 (1999)CrossRefzbMATHGoogle Scholar
  17. 17.
    Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection. KR 92, 165–176 (1992)Google Scholar
  18. 18.
    Sato, T.: A statistical learning method for logic programs with distribution semantics. In: The 12th International Conference on Logic Programming (ICLP 1995) (1995)Google Scholar
  19. 19.
    Schultz, C., Bhatt, M.: Encoding relative orientation and mereotopology relations with geometric constraints in CLP(QS). In: 1st Workshop on Logics for Qualitative Modelling and Reasoning (LQMR 2015), Lodz, Poland, September 2015Google Scholar
  20. 20.
    Schultz, C., Bhatt, M.: Spatial symmetry driven pruning strategies for efficient declarative spatial reasoning. In: Fabrikant, S.I., Raubal, M., Bertolotto, M., Davies, C., Freundschuh, S., Bell, S. (eds.) COSIT 2015. LNCS, vol. 9368, pp. 331–353. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-23374-1_16 CrossRefGoogle Scholar
  21. 21.
    Schultz, C., Bhatt, M.: A numerical optimisation based characterisation of spatial reasoning. In: Alferes, J.J., Bertossi, L., Governatori, G., Fodor, P., Roman, D. (eds.) RuleML 2016. LNCS, vol. 9718, pp. 199–207. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-42019-6_13 CrossRefGoogle Scholar
  22. 22.
    Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic programs. J. ACM (JACM) 38(3), 619–649 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Wałęga, P.A., Bhatt, M., Schultz, C.: ASPMT(QS): non-monotonic spatial reasoning with answer set programming modulo theories. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.) LPNMR 2015. LNCS, vol. 9345, pp. 488–501. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  24. 24.
    Wallgrün, J.O.: Exploiting qualitative spatial reasoning for topological adjustment of spatial data. In: Proceedings of the 20th International Conference on Advances in Geographic Information Systems, pp. 229–238. ACM (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.University of MünsterMünsterGermany
  2. 2.University of BremenBremenGermany
  3. 3.The DesignSpace GroupBremenGermany

Personalised recommendations