Advertisement

evoVision3D: A Multiscale Visualization of Evolutionary Histories

  • Justin J. Kelly
  • Christian Jacob
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9921)

Abstract

Evolutionary computation is a field defined by large data sets and complex relationships. Because of this complexity it can be difficult to identify trends and patterns that can help improve future projects and drive experimentation. To address this we present evoVision3D, a multiscale 3D system designed to take data sets from evolutionary design experiments and visualize them in order to assist in their inspection and analysis. Our system is implemented in the Unity 3D game development environment, for which we show that it lends itself to immersive navigation through large data sets, going even beyond evolution-based search and interactive data exploration.

Keywords

Evolutionary computation Multiscale Visualization Game engine 

References

  1. 1.
    Apache subversion; enterprise-class centralized version control for the masses. https://subversion.apache.org/
  2. 2.
    git -local-branching-on-the-cheap. https://git-scm.com/
  3. 3.
  4. 4.
    Unity 3d game engine. https://unity3d.com/
  5. 5.
    Stolte, C., Tang, D., Hanrahan, P.: Multiscale visualization using data cubes. IEEE Trans. Vis. Comput. Graph. 9(2), 176–187 (2003)CrossRefGoogle Scholar
  6. 6.
    Coello, C.A.C., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary algorithms for solving multi-objective problems, vol. 242. Springer, New York (2002)CrossRefzbMATHGoogle Scholar
  7. 7.
    Daida, J.M., Hilss, A.M., Ward, D.J., Long, S.L.: Visualizing tree structures in genetic programming. Genet. Programm. Evolvable Mach. 6(1), 79–110 (2005)CrossRefzbMATHGoogle Scholar
  8. 8.
    Davison, T., von Mammen, S., Jacob, C.: EvoShelf: a system for managing and exploring evolutionary data. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6239, pp. 310–319. Springer, Heidelberg (2010)Google Scholar
  9. 9.
    Etemad, K., Carpendale, S., Samavati, F.: Node-ring graph visualization clears edge congestion. In: Proceedings of the IEEE VIS Arts Program (VISAP), pp. 67–74Google Scholar
  10. 10.
    Kelly, J., Jacob, C.: evoVersion: visualizing evolutionary histories. In: IEEE Congress on Evolutionary Computation, CEC 2016. IEEE (2016) (in print)Google Scholar
  11. 11.
    Koçer, B., Arslan, A.: Transfer Learning in Genetic Algorithms (2012)Google Scholar
  12. 12.
    Koza, J.R.: Genetic Programming: On The Programming of Computers by Means of Natural Selection, vol. 1. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  13. 13.
    Lutton, E., Fekete, J.D.: Visual analytics of EA data. In: Proceedings of the 13th Annual Conference on Genetic And Evolutionary Computation - GECCO 2011, pp. 145–146 (2011)Google Scholar
  14. 14.
    Miller, R., Mozhayskiy, V., Tagkopoulos, L., Ma, K.L.: EVEVis: a multi-scale visualization system for dense evolutionary data. In: 2011 IEEE Symposium on Biological Data Visualization (BioVis), pp. 143–150 (2011)Google Scholar
  15. 15.
    Shepherd, J.J., Zhou, L., Zhang, Y., Zheng, J., Tang, J.: Exploring genomes with a game engine. In: Proceedings - 2013 IEEE International Conference on Bioinformatics and Biomedicine, IEEE BIBM 2013, vol. 169(207890), pp. 26–30 (2013)Google Scholar
  16. 16.
    Yang, Z., Tang, K., Yao, X.: Large scale evolutionary optimization using cooperative coevolution. Inf. Sci. 178(15), 2985–2999 (2008)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of CalgaryCalgaryCanada

Personalised recommendations