Coarse-Grained Barrier Trees of Fitness Landscapes

  • Sebastian Herrmann
  • Gabriela Ochoa
  • Franz Rothlauf
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9921)

Abstract

Recent literature suggests that local optima in fitness landscapes are clustered, which offers an explanation of why perturbation-based metaheuristics often fail to find the global optimum: they become trapped in a sub-optimal cluster. We introduce a method to extract and visualize the global organization of these clusters in form of a barrier tree. Barrier trees have been used to visualize the barriers between local optima basins in fitness landscapes. Our method computes a more coarsely grained tree to reveal the barriers between clusters of local optima. The core element is a new variant of the flooding algorithm, applicable to local optima networks, a compressed representation of fitness landscapes. To identify the clusters, we apply a community detection algorithm. A sample of 200 NK fitness landscapes suggests that the depth of their coarse-grained barrier tree is related to their search difficulty.

Keywords

Fitness landscape analysis Barrier tree Disconnectivity graph Local optima networks Big valley Search difficulty NK-landscapes 

References

  1. 1.
    Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search. In: Handbook of Metaheuristics, pp. 320–353. Kluwer Academic Publishers, Boston (2003)Google Scholar
  2. 2.
    Applegate, D., Cook, W., Rohe, A.: Chained Lin-Kernighan for large traveling salesman problems. INFORMS J. Comput. 15, 82–92 (2003)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-salesman problem. Oper. Res. 21, 498–516 (1973)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Hains, D.R., Whitley, D.L., Howe, A.E.: Revisiting the big valley search space structure in the TSP. J. Oper. Res. Soc. 62, 305–312 (2011)CrossRefGoogle Scholar
  5. 5.
    Ochoa, G., Veerapen, N., Whitley, D., Burke, E.K.: The multi-funnel structure of TSP fitness landscapes: a visual exploration. In: Bonnevay, S., Legrand, P., Monmarché, N., Lutton, E., Schoenauer, M. (eds.) EA 2015. LNCS, vol. 9554, pp. 1–13. Springer, Heidelberg (2016). doi:10.1007/978-3-319-31471-6_1 CrossRefGoogle Scholar
  6. 6.
    Ochoa, G., Veerapen, N.: Deconstructing the big valley search space hypothesis. In: Chicano, F., Hu, B., García-Sánchez, P. (eds.) EvoCOP 2016. LNCS, vol. 9595, pp. 58–73. Springer, Heidelberg (2016). doi:10.1007/978-3-319-30698-8_5 CrossRefGoogle Scholar
  7. 7.
    Herrmann, S., Ochoa, G., Rothlauf, F.: Communities of local optima as funnels in fitness landscapes. In: Proceedings of 2016 Genetic and Evolutionary Computation Conference - GECCO 2016 (2016)Google Scholar
  8. 8.
    Hallam, J., Prügel-Bennett, A.: Large barrier trees for studying search. IEEE Trans. Evol. Comput. 9, 385–397 (2005)CrossRefGoogle Scholar
  9. 9.
    van Stein, B., Emmerich, M., Yang, Z.: Fitness landscape analysis of nk landscapes and vehicle routing problems by expanded barrier trees. In: Emmerich, M., et al. (eds.) Evolutionary Computation IV. AISC, vol. 227, pp. 75–89. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Ochoa, G., Tomassini, M., Vérel, S., Darabos, C.: A study of NK landscapes’ basins and local optima networks. In: Proceedings of 10th Annual Conference on Genetic and Evolutionary Computation - GECCO 2008, p. 555. ACM Press, New York (2008)Google Scholar
  11. 11.
    van Dongen, S.: Graph clustering by flow simulation. Ph.D. thesis, Utrecht University (2001)Google Scholar
  12. 12.
    Wright, S.: The roles of mutation, inbreeding, crossbreeding, and selection in evolution. In: Proceedings of 6th International Congress of Genetics, pp. 356–366 (1932)Google Scholar
  13. 13.
    Glover, F.: Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 13, 533–549 (1986)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Weinberger, E.: Correlated and uncorrelated fitness landscapes and how to tell the difference. Biol. Cybern. 336, 325–336 (1990)CrossRefMATHGoogle Scholar
  15. 15.
    Kauffman, S.A., Weinberger, E.D.: The NK model of rugged fitness landscapes and its application to maturation of the immune response. J. Theor. Biol. 141, 211–245 (1989)CrossRefGoogle Scholar
  16. 16.
    Becker, O.M., Karplus, M.: The topology of multidimensional potential energy surfaces: theory and application to peptide structure and kinetics. J. Chem. Phys. 106, 1495 (1997)CrossRefGoogle Scholar
  17. 17.
    Flamm, C., Hofacker, I.L., Stadler, P.F., Wolfinger, M.T.: Barrier trees of degenerate landscapes. Zeitschrift füer Physikalische Chemie 216, 155 (2002)Google Scholar
  18. 18.
    Doye, J.P.K., Miller, M.A., Wales, D.J.: Evolution of the potential energy surface with size for Lennard-Jones clusters. J. Chem. Phys. 111, 8417 (1999)CrossRefGoogle Scholar
  19. 19.
    Doye, J.P.K., Miller, M.A., Wales, D.J.: The double-funnel energy landscape of the 38-atom Lennard-Jones cluster. J. Chem. Phys. 110, 6896 (1999)CrossRefGoogle Scholar
  20. 20.
    Ochoa, G., Veerapen, N.: Additional dimensions to the study of funnels in combinatorial landscapes. In: Proceedings of 2016 Genetic and Evolutionary Computation Conference - GECCO 2016 (2016)Google Scholar
  21. 21.
    Stillinger, F.H.: A topographic view of supercooled liquids and glass formation. Science 267, 1935–1939 (1995)CrossRefGoogle Scholar
  22. 22.
    Vérel, S., Daolio, F., Ochoa, G., Tomassini, M.: Local optima networks with escape edges. In: Hao, J.-K., Legrand, P., Collet, P., Monmarché, N., Lutton, E., Schoenauer, M. (eds.) EA 2011. LNCS, vol. 7401, pp. 49–60. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  23. 23.
    Talbi, E., Bessière, P.: A parallel genetic algorithm for the graph partitioning problem. In: Proceedings of 5th International Conference on Supercomputing - ICS 1991, pp. 312–320. ACM Press, New York (1991)Google Scholar
  24. 24.
    Fortunato, S.: Community detection in graphs. Phys. Rep. 486, 75–174 (2010)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Porter, M.A., Onnela, J.P., Mucha, P.J.: Communities in networks. Not. AMS 486, 1082–1097 (2009)MathSciNetMATHGoogle Scholar
  26. 26.
    Daolio, F., Tomassini, M., Vérel, S., Ochoa, G.: Communities of minima in local optima networks of combinatorial spaces. Phys. A: Stat. Mech. Appl. 390, 1684–1694 (2011)CrossRefGoogle Scholar
  27. 27.
    Iclanzan, D., Daolio, F., Tomassini, M.: Data-driven local optima network characterization of QAPLIB instances. In: Proceedings of 2014 Conference on Genetic and Evolutionary Computation - GECCO 2014, pp. 453–460. ACM Press, New York (2014)Google Scholar
  28. 28.
    Jacomy, M., Venturini, T., Heymann, S., Bastian, M.: ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software. PLoS ONE 9, e98679 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Sebastian Herrmann
    • 1
  • Gabriela Ochoa
    • 2
  • Franz Rothlauf
    • 1
  1. 1.Department of Information Systems and Business AdministrationJohannes Gutenberg-UniversitätMainzGermany
  2. 2.Department of Computing Science and MathematicsUniversity of StirlingStirlingScotland

Personalised recommendations